This document provides a framework in which the quality of a dataset can be described, whether by the dataset publisher or by a broader community of users. It does not provide a formal, complete definition of quality, rather, it sets out a consistent means by which information can be provided such that a potential user of a dataset can make his/her own judgment about its fitness for purpose.
The model for the Data Quality Vocabulary is nearing maturity, but the Working Group is seeking feedback on a number of specific issues highlighted in the document below.
The Data on the Web Best Practices Working Draft has pointed out the relevance of publishing information about the quality of data published on the Web. Accordingly, the Data on the Web Best Practices Working Group has been chartered to create a vocabulary for expressing data quality. The Data Quality Vocabulary (DQV) presented in this document is foreseen as an extension to DCAT [[vocab-dcat]] to cover the quality of the data, how frequently is it updated, whether it accepts user corrections, persistence commitments etc. When used by publishers, this vocabulary will foster trust in the data amongst developers.
This vocabulary does not seek to determine what "quality" means. We believe that quality lies in the eye of the beholder; that there is no objective, ideal definition of it. Some datasets will be judged as low-quality resources by some data consumers, while they will perfectly fit others' needs. In accordance, we attach a lot of importance to allowing many actors to assess the quality of datasets and publish their annotations, certificates, opinions about a dataset. A dataset's publisher should seek to publish metadata that helps data consumers determine whether they can use the dataset to their benefit. However, publishers should not be the only ones to have a say on the quality of data published in an open environment like the Web. Certification agencies, data aggregators, data consumers can make relevant quality assessments, too.
We want to stimulate this by making it easier to publish, exchange and consume quality metadata, for every step of a dataset's lifecycle. This is why next to rather expected constructs like quality measures, the Data Quality Vocabulary puts an emphasis on feedback, annotation, agreements.
Note that DQV elements can be applied not only to express metadata on the quality of datasets; they can also be used to express statements about the quality of that metadata itself. This is especially true when it comes to representing the provenance of that metadata or its conformance with respect to established metadata standards.
The namespace for DQV is provisionally set as
http://www.w3.org/ns/dqv#
. DQV, however, seeks to re-use elements from other vocabularies,
notably DCAT, following the
best
practices for data vocabularies identified by the Data on the Web
Best Practices Working Group.
The table below indicates the full list of namespaces and prefixes used in this document.
Prefix | Namespace |
---|---|
daq | http://purl.org/eis/vocab/daq# |
dcat | http://www.w3.org/ns/dcat# |
dcterms | http://purl.org/dc/terms/ |
dqv | http://www.w3.org/ns/dqv# |
duv | http://www.w3.org/ns/duv# |
oa | http://www.w3.org/ns/oa# |
prov | http://www.w3.org/ns/prov# |
sdmx-attribute | http://purl.org/linked-data/sdmx/2009/attribute# |
skos | http://www.w3.org/2004/02/skos/core# |
The following vocabulary is based on DCAT [[vocab-dcat]] that it extends with a number of additional properties and classes suitable for expressing the quality of a dataset.
The quality of a given dataset or distribution is assessed via a number of observed properties. For instance, one may consider a dataset to be of high quality because it complies to a specific standard while for other use-cases the quality of the data will depend on its level of interlinking with other datasets. To express these properties an instance of a dcat:Dataset or dcat:Distribution can be related to five different types of quality information represented by the following classes:
DQV defines quality measures as specific instances of Quality Measurements, adapting the daQ quality framework [[DaQ]], [[DaQ-RDFCUBE]]. It relies on quality dimensions and quality metrics.
Besides quality measurements, DQV considers certificates, standards, and quality policies, which can also be organized according to dimensions. Quality metadata containers (dqv:QualityMetadata) can group together different quality statements, so that their provenance can be tracked jointly.
N.B.: "containment" refers to the inclusion of quality statements into "containers", which may or may not be treated as (RDF) graphs (see later example and the usage note for the class dqv:QualityMetadata).
Quality information can be derived from other quality information. For example, a quality annotation can be derived from a standard or a quality measurement. Quality measurements can be derived from other measurements. Metrics can be derived from other metrics. A standard can be built on another standard or a (set of) metrics. DQV models such derivations through the property prov:wasDerivedFrom as illustrated in the diagram below.
This section is work in progress. We will include later more tables with specification of individual classes and properties.
The following properties should be used on this class: dqv:isMeasurementOf, dqv:value, qb:dataSet.
Should (and if yes, how) DQV represent parameters for a metric applied for computing a specific quality measurement (e.g.,a specific setting of weights)? (Issue-223)
RDF Class: | dqv:QualityMeasurement |
---|---|
Definition: | A quality measurement represents the evaluation of a given dataset (or dataset distribution) against a specific quality metric. |
Subclass of: | qb:Observation |
Equivalent class | daq:Observation |
Usage note: | The unit of measure in quality measurement should be specified through the property sdmx-attribute:unitMeasure as recommended by RDF Data Cube [[Vocab-Data-Cube]]. The Ontology of units of Measure (OM) [[RijgersbergEtAl]] provides a list of HTTP dereferenceable unit of measures which can be exploited as values for sdmx-attribute:unitMeasure. |
RDF Property: | dqv:isMeasurementOf |
---|---|
Definition: | Indicates the metric being observed. |
Instance of: | qb:DimensionProperty |
Domain: | qb:Observation |
Range: | dqv:Metric |
Equivalent Property | daq:metric |
RDF Property: | qb:dataSet |
---|---|
Definition: | Indicates the dataset to a quality measurement (which is an RDF Data Cube observation) belongs. |
Domain: | qb:Observation |
Range: | qb:DataSet |
RDF Property: | dqv:computedOn |
---|---|
Definition: | Refers to the resource (e.g., a dataset, a linkset, a graph, a set of triples) on which the quality measurement is performed. In the DQV context, this property is generally expected to be used in statements in which objects are instances of dcat:Dataset and dcat:Distribution. |
Instance of: | qb:DimensionProperty |
Domain: | dqv:QualityMeasurement |
Equivalent property: | daq:computedOn |
Inverse property: | dqv:hasQualityMeasurement |
RDF Property: | dqv:value |
---|---|
Definition: | Refers to values computed by metric. |
Instance of: | qb:MeasureProperty, owl:DatatypeProperty |
Domain: | dqv:QualityMeasurement |
Equivalent property: | daq:value |
The following properties should be used on this class: dqv:inDimension.
RDF Class: | dqv:Metric |
---|---|
Definition: | A standard to measure a quality dimension. An observation (instance of dqv:QualityMeasurement) assigns a value in a given unit to a Metric. |
Equivalent class | daq:Metric |
RDF Property: | dqv:expectedDataType |
---|---|
Definition: | Represents the expected data type for metric's observed value (e.g. xsd:boolean, xsd:double etc...) |
Domain: | dqv:Metric |
Range: | xsd:anySimpleType |
Equivalent property | daq:expectedDataType |
The following properties should be used on this class: dqv:inCategory.
RDF Class: | dqv:Dimension |
---|---|
Definition: | Represents criteria relevant for assessing quality. Each quality dimension must have one or more metric to measure it. A dimension is linked with a category using the dqv:inDimension property. |
Subclass of: | skos:Concept |
Equivalent class | daq:Dimension |
RDF Property: | dqv:inCategory |
---|---|
Definition: | Represents the category a dimension is grouped in. |
Domain: | dqv:Dimension |
Range: | dqv:Category |
Inverse: | daq:hasDimension |
Usage note: | Categories are meant to systematically organize dimensions. The Data Quality Vocabulary defines no specific cardinality constraints for dqv:inCategory, since distinct quality frameworks might have different perspectives over a dimension. A dimension may therefore be associated to more than one category. However, those who define new quality metrics should try to avoid this as much as possible and assign only one category to the dimensions they define. |
RDF Class: | dqv:Category |
---|---|
Definition: | Represents a group of quality dimensions in which a common type of information is used as quality indicator. |
Subclass of: | skos:Concept |
Equivalent class | daq:Category |
Dimension and category are abstract entities. We represent instances dqv:Dimension and dqv:Category as instances of skos:Concept
, which we think enable similar features as these for dimensions and categories in daQ. Our representation choice differs more significantly for metrics, however. daQ uses RDFS/OWL classes and subclasses to represent constraints on measurements (e.g., on the type of values). RDFS/OWL however makes an 'open world' assumption that does not allow one to capture entirely all constraints. Additionally, languages are currently being defined to represent constraints in more appropriate ways (SHACL). We think it is therefore not appropriate now to recommend to treat specific metrics as subclasses of dqv:Metric, and we refer implementers to future progress on SHACL and related technology.
RDF Class: | dqv:QualityMeasurementDataset |
---|---|
Definition: | Represents a dataset of quality measurements, evaluations of a given dataset (or dataset distribution) against a specific quality metric. |
Subclass of: | qb:DataSet |
Equivalent class | daq:QualityGraph |
RDF Class: | dqv:QualityPolicy |
---|---|
Definition: | Represents a policy or agreement that is chiefly governed by data quality concerns. |
RDF Class: | dqv:QualityAnnotation |
---|---|
Definition: | Represents quality annotations, including rating, quality certificate, feedback that can be associated to datasets or distributions. Quality annotations must have one oa:motivatedBy statement with an instance of oa:Motivation (and skos:Concept), which reflects a quality assessment purpose. We define this instance as dqv:qualityAssessment. |
Subclass of: | oa:Annotation |
Equivalent class | EquivalentClasses( dqv:QualityAnnotation ObjectHasValue( oa:motivatedBy dqv:qualityAssessment ) ) |
To make the document more self-contained we might consider to describe some properties of oa:Annotation, such as hasBody, hasTarget.
RDF Class: | dqv:QualityCertificate |
---|---|
Definition: | An annotation that associates a resource (especially, a dataset or a distribution) to another resource (for example, a document) that certifies the resource's quality according to a set of quality assessment rules. |
Subclass of: | dqv:QualityAnnotation |
RDF Class: | dqv:UserQualityFeedback |
---|---|
Definition: | Represents feedback users might want to associate to datasets or distributions. Besides dqv:qualityAssessment which is the motivation required by all quality annotations, one of the predefined instances of oa:Motivation should be indicated as motivation to distinguish among the different kinds of feedback, e.g, classifications, questions. |
Subclass of: | dqv:QualityAnnotation duv:UserFeedback |
RDF Class: | dqv:QualityMetadata |
---|---|
Definition: | Represents quality metadata, it is defined to group quality certificates, policies, measurements and annotations under a named graph. |
Subclass of: | rdfg:Graph |
Usage note: |
QualityMetadata containers do not necessary include all types of quality statements DQV can support. Implementers decide the granularity of containment. In the current version of DQV, we also leave open the choice of the containment "technique". Implementers can use (RDF) graph containment. They may also use a dedicated property of their choice to link instances of dqv:QualityMetadata with instances of other DQV classes. For example using (a subproperty of) dcterms:hasPart. |
RDF Property: | dqv:inDimension |
---|---|
Definition: | Represents the dimensions a quality metric, certificate and annotation allow a measurement of. |
Range: | dqv:Dimension |
Equivalent to: |
SubObjectPropertyOf( ObjectInverseOf( daq:hasMetric ) dqv:inDimension ) |
Usage note: | Dimensions are meant to systematically organize metrics, quality certificates and quality annotations. The Data Quality Vocabulary defines no specific cardinality constraints for dqv:inDimension, since distinct quality frameworks might have different perspectives over a metric. A metric may therefore be associated to more than one dimension. However, those who define new quality metrics should try to avoid this as much as possible and assign only one dimension to the metrics they define. More than one dimension can be indicated for each quality annotation or certificate. |
RDF Property: | dqv:hasQualityMeasurement |
---|---|
Definition: | Refers to the performed quality measurements. Quality measurements can be performed to any kind of resource (e.g., a dataset, a linkset, a graph, a set of triples). However, in the DQV context, this property is generally expected to be used in statements in which subjects are instances of dcat:Dataset and dcat:Distribution. |
Range: | dqv:QualityMeasurement |
Inverse property: | dqv:computedOn |
RDF Property: | prov:wasDerivedFrom |
---|---|
Definition: | A derivation is a transformation of an entity into another, an update of an entity resulting in a new one, or the construction of a new entity based on a pre-existing entity. |
Domain: | prov:Entity |
Range: | prov:Entity |
Usage note: | prov:wasDerivedFrom expresses a quite abstract relation of derivation. More specialized relations of derivation can be defined as subproperties of prov:wasDerivedFrom, whenever this is required by applications. |
The section entitled "Expressing derivation between quality metrics, measurements and annotations" shows examples of uses of this property.
RDF Instance: | dqv:qualityAssessment |
---|---|
Definition: | Motivation that must be specified for quality annotations. |
Instance of: | oa:Motivation |
Whenever DQV implementers need to extend the motivations for quality annotations, they should follow the instructions provided by the Web Annotation Data Model, and the concepts in the extension should be defined as specializations of dqv:qualityAssessment.
RDF Instance: | dqv:precision |
---|---|
Definition: | Precision is a quality dimension which refers to the recorded level of details. It represents the exactness of measurement or description. |
Instance of: | dqv:Dimension |
Equivalent to | iso:precision |
NB: in the remainder of this section, the prefix ":
"
refers to http://example.org/
myDataset
, and its distribution
myDatasetDistribution
,
:myDataset a dcat:Dataset ; dcterms:title "My dataset" ; dcat:distribution :myDatasetDistribution . :myDatasetDistribution a dcat:Distribution ; dcat:downloadURL <http://www.example.org/files/mydataset.csv> ; dcterms:title "CSV distribution of dataset" ; dcat:mediaType "text/csv" ; dcat:byteSize "87120"^^xsd:decimal .
An automated quality checker has provided a quality assessment with
two (CSV) quality measurements for
myDatasetDistribution
.
:myDatasetDistribution dqv:hasQualityMeasurement :measurement1, :measurement2 . :measurement1 a dqv:QualityMeasurement ; dqv:computedOn :myDatasetDistribution ; dqv:isMeasurementOf :downloadURLAvailabilityMetric ; dqv:value "true"^^xsd:boolean . :measurement2 a dqv:QualityMeasurement ; dqv:computedOn :myDatasetDistribution ; dqv:isMeasurementOf :csvCompletenessMetric ; dqv:value "0.5"^^xsd:double . #definition of dimensions and metrics :availability a dqv:Dimension ; skos:prefLabel "Availability"@en ; skos:definition "Availability of a dataset is the extent to which data (or some portion of it) is present, obtainable and ready for use."@en ; dqv:inCategory :accessibility . :completeness a dqv:Dimension ; skos:prefLabel "Completeness"@en ; skos:definition "Completeness refers to the degree to which all required information is present in a particular dataset."@en ; dqv:inCategory :intrinsicDimensions . :downloadURLAvailabilityMetric a dqv:Metric ; skos:definition "It checks if dcat:downloadURL is available and if its value is dereferenceable."@en ; dqv:expectedDataType xsd:boolean ; dqv:inDimension :availability . :csvCompletenessMetric a dqv:Metric ; skos:definition "Ratio between the number of objects represented in the csv and the number of objects expected to be represented according to the declared dataset scope."@en ; dqv:expectedDataType xsd:double ; dqv:inDimension :completeness .
Categories and dimensions might be more extensively defined, see in the section 'Dimensions and metrics hints' for further examples. Any quality framework is free to define its own dimensions and categories.
The results of metrics obtained in the previous assessment are
stored in the
myQualityMetadata
graph.
# :myQualityMatadata is a graph
:myQualityMetadata {
:myDatasetDistribution
dqv:hasQualityMeasurement :measurement1, :measurement2
.
# The graph contains the rest of the statements presented in the previous example.
}
# :myQualityMetadata has been created by :qualityChecker and it is the result of the
# :qualityChecking activity
:myQualityMetadata
a dqv:QualityMetadata ;
prov:wasAttributedTo :qualityChecker ;
prov:generatedAtTime "2015-05-27T02:52:02Z"^^xsd:dateTime ;
prov:wasGeneratedBy :qualityChecking
.
# :qualityChecker is a service computing some quality metrics
:qualityChecker
a prov:SoftwareAgent ;
rdfs:label "a quality assessment service"^^xsd:string
# Further details about quality service/software can be provided, for example,
# deploying vocabularies such as Data Usage Vocabulary (DUV), Dublin Core or ADMS.SW
.
# the :qualityChecking is the activity that has generated :myQualityMetadata starting from
# :myDatasetDistribution
:qualityChecking
a prov:Activity;
rdfs:label "the checking of myDatasetDistribution's quality"^^xsd:string;
prov:wasAssociatedWith :qualityChecker;
prov:used :myDatasetDistribution;
prov:generated :myQualityMetadata;
prov:endedAtTime "2015-05-27T02:52:02Z"^^xsd:dateTime;
prov:startedAtTime "2015-05-27T00:52:02Z"^^xsd:dateTime
.
The group has discussed provenance at different level of
granularity (dqv:QualityMeasurement and dqv:QualityMetadata). In the previous example we have shown how to track provenance at level of quality metadata, in the following, we provide an example of provenance for the quality measurement :measurement
.
:myDatasetDistribution dqv:hasQualityMeasurement :measurement . # :measurement has been created by :qualityChecker and it is the result of the # :qualityChecking activity :measurement a dqv:QualityMeasurement ; dqv:computedOn :myDatasetDistribution ; dqv:isMeasurementOf :downloadURLAvailabilityMetric ; dqv:value "true"^^xsd:boolean ; prov:wasAttributedTo :qualityChecker ; prov:generatedAtTime "2015-05-27T02:52:02Z"^^xsd:dateTime ; prov:wasGeneratedBy :qualityChecking . :downloadURLAvailabilityMetric a dqv:Metric ; skos:definition "It checks if dcat:downloadURL is available and if its value is dereferenceable."@en ; dqv:expectedDataType xsd:boolean ; dqv:inDimension :availability . # :qualityChecker is a services computing some quality metrics :qualityChecker a prov:SoftwareAgent ; rdfs:label "a quality assessment service"^^xsd:string # Further details about quality service/software can be provided, for example, # deploying vocabularies such as Data Usage Vocabulary (DUV), Dublin Core or ADMS.SW . # the :qualityChecking is the activity that has generated :measurement starting from # :myDatasetDistribution :qualityChecking a prov:Activity; rdfs:label "the checking of myDatasetDistribution's quality"^^xsd:string; prov:wasAssociatedWith :qualityChecker; prov:used :myDatasetDistribution; prov:generated :measurement; prov:endedAtTime "2015-05-27T02:52:02Z"^^xsd:dateTime; prov:startedAtTime "2015-05-27T00:52:02Z"^^xsd:dateTime .
Statements similar to the ones applied to the resource
myQualityMetadata
above can be applied to the resource
myDataset
to indicate the provenance of the dataset. I.e., a dataset can be
generated by a specific software agent, be generated at a certain
time, etc. The HCLS
Community Profile for describing datasets provides further
examples.
Let us express that an ODI certificate for the "City of Raleigh Open Government Data" dataset is available at the URL <https://certificates.theodi.org/en/datasets/393/certificate>.
<https://certificates.theodi.org/en/datasets/393> a dcat:Dataset ; dqv:hasQualityAnnotation :myDatasetQA . :myDatasetQA a dqv:QualityCertificate ; oa:hasTarget <https://certificates.theodi.org/en/datasets/393> ; oa:hasBody <https://certificates.theodi.org/en/datasets/393/certificate> ; oa:motivatedBy dqv:qualityAssessment .
Let us ask a question about the completeness of the "City of Raleigh Open Government Data" dataset.
<https://certificates.theodi.org/en/datasets/393> a dcat:Dataset ; dqv:hasQualityAnnotation :questionQA . :questionQA a dqv:UserQualityFeedback ; oa:hasTarget <https://certificates.theodi.org/en/datasets/393> ; oa:hasBody :textBody ; oa:motivatedBy dqv:qualityAssessment, oa:questioning ; dqv:inDimension :completeness . :textBody a cnt:ContentAsText, dctypes:Text ; cnt:chars "Could you please provide information about the completeness of your dataset?" ; dc:language "en" ; dc:format "text/plain" .
Let us express that the "City of Raleigh Open Government Data" dataset is classified as a four stars dataset against the 5 Stars linked open data rating system.
<https://certificates.theodi.org/en/datasets/393> a dcat:Dataset ; dqv:hasQualityAnnotation :classificationQA . :classificationQA a dqv:UserQualityFeedback ; oa:hasTarget <https://certificates.theodi.org/en/datasets/393> ; oa:hasBody :four_stars ; oa:motivatedBy dqv:qualityAssessment, oa:classifying ; dqv:inDimension :availability . :four_stars a skos:Concept; skos:inScheme :OpenData5Star ; skos:prefLabel "Four stars"@en ; skos:definition "Dataset available on the web with structured machine-readable non proprietary format. It uses URIs to denote things."@en .
DQV models derivation with the property prov:wasDerivedFrom
.
For example, the accessability of the dataset :myDataset
can be derived from the accessability of its distributions :myCSVDatasetDistribution
and :mySPARQLDatasetDistribution
.
:myDataset a dcat:Dataset ; dcterms:title "My dataset" ; dcat:distribution :myDatasetDistribution . :myCSVDatasetDistribution a dcat:Distribution ; dcat:downloadURL <http://www.example.org/files/mydataset.csv> ; dcterms:title "CSV distribution of dataset" ; dcat:mediaType "text/csv" ; dcat:byteSize "87120"^^xsd:decimal . :mySPARQLDatasetDistribution a dcat:Distribution ; dcat:accessURL <http://www.example.org/sparql> dcterms:title "SPARQL access to the dataset" ; dcat:mediaType "sparql-results+json" . #definition of dimensions and metrics :availability a dqv:Dimension ; skos:prefLabel "Availability"@en ; skos:definition "Availability of a dataset is the extent to which data (or some portion of it) is present, obtainable and ready for use."@en ; dqv:inCategory :accessibility . :downloadURLAvailabilityMetric a dqv:Metric ; skos:definition "Checks if dcat:downloadURL is available and if its value is dereferenceable."@en ; dqv:expectedDataType xsd:boolean ; dqv:inDimension :availability . :SPARQLAvailabilityMetric a dqv:Metric ; skos:definition "Checks if an URL specified in dcat:accessURL is available and if at that URL a SPARQL endpoint is active."@en ; dqv:expectedDataType xsd:boolean ; dqv:inDimension :availability . :datasetAvailabilityMetric a dqv:Metric ; prov:wasDerivedFrom :downloadURLAvailabilityMetric, :SPARQLAvailabilityMetric; skos:definition "Checks the availabitity of the specified distributions."@en ; dqv:expectedDataType xsd:boolean ; dqv:inDimension :availability .
Depending on the specific application context, the expression of this derivation can be kept at level of the quality measurements. In the following the measurement :measurement3
of :myDataset
's availability is derived from :measurement1
and :measurement2
.
:myCSVDatasetDistribution dqv:hasQualityMeasurement :measurement1 . :mySPARQLDatasetDistribution dqv:hasQualityMeasurement :measurement2 . :myDataset dqv:hasQualityMeasurement :measurement3 . :measurement1 a dqv:QualityMeasurement ; dqv:computedOn :myCSVDatasetDistribution ; dqv:isMeasurementOf :downloadURLAvailabilityMetric ; dqv:value "true"^^xsd:boolean :measurement2 a dqv:QualityMeasurement ; dqv:computedOn :mySPARQLDatasetDistribution ; dqv:isMeasurementOf :SPARQLAvailabilityMetric ; dqv:value "false"^^xsd:boolean . :measurement3 a dqv:QualityMeasurement ; dqv:computedOn :myDataset ; dqv:isMeasurementOf :datasetAvailabilityMetric ; prov:wasDerivedFrom measurement2, measurement3 ; dqv:value "false"^^xsd:boolean .
The classification of mydataset
as :three_star
can be derived from the result of a quality measurement :measurement2
:myDataset dqv:hasQualityAnnotation :myDatasetClassification . :myDatasetClassification a dqv:UserQualityFeedback ; prov:wasDerivedFrom :measurement2 ; oa:hasTarget :myDataset ; oa:hasBody :three_stars ; oa:motivatedBy dqv:qualityAssessment, oa:classifying ; dqv:inDimension :availability . :three_stars a skos:Concept; skos:inScheme :OpenData5Star ; skos:prefLabel "three stars"@en ; skos:definition "Dataset available on the web with structured machine-readable non proprietary format."@en .
Let’s consider
myControlledVocabulary
, a controlled vocabulary made available on the Web using the SKOS
[[SKOS-reference]] and DCAT [[vocab-dcat]].
:myControlledVocabulary a dcat:Dataset ; dcterms:title "My controlled vocabulary" . :myControlledVocabularyDistribution a dcat:Distribution ; dcat:downloadURL <http://www.example.org/files/myControlledVocabulary.csv> ; dcterms:title "SKOS/RDF distribution of my controlled vocabulary" ; dcat:mediaType "text/turtle" ; dcat:byteSize "190120"^^xsd:decimal .
qSKOS is an open source tool, which detects quality issues affecting SKOS vocabularies [[qSKOS]]. It considers 26 quality issues including, for example, “Incomplete Language Coverage” and “Label Conflicts” which are grouped in the category “Labeling and Documentation issues”. Quality issues addressed by qSKOS can be considered as DQV quality dimensions, whilst the number of concepts in which a quality issue occurs can be the metric deployed for each quality dimension.
# definition of instances for some of the metrics, dimensions and categories deployed # in qSKOS. :numOfConceptsWithLabelConflicts a dqv:Metric; skos:prefLabel "Conflicting concepts"@en ; skos:definition "Number of concepts having conflicting labels"@en ; dqv:expectedDataType xsd:interger ; dqv:inDimension :LabelConflicts . :numOfConceptsWithIncompleteLanguageCoverage a dqv:Metric; skos:prefLabel "Language incomplete concepts"@en ; skos:definition "Number of concepts having an incomplete language coverage"@en ; dqv:expectedDataType xsd:interger ; dqv:inDimension :incompleteLanguageCoverage . :LabelConflicts a dqv:Dimension; skos:prefLabel "Label Conflicts"@en ; skos:definition "Dimension corresponding to the label conflicts quality issue"@en ; dqv:inCategory :labelingDocumentationIssues . :incompleteLanguageCoverage a dqv:Dimension; skos:prefLabel "Incomplete Language Coverage"@en ; skos:definition "Dimension corresponding to the incomplete language coverage issue"@en ; dqv:inCategory :labelingDocumentationIssues . :labelingDocumentationIssues a dqv:Category ; skos:prefLabel "Labeling and Documentation Issues"@en ; skos:definition "Category grouping labeling and documentation issues"@en .
DQV represents the qSKOS quality assessment on
myControlledVocabulary
for the dimensions “Incomplete Language Coverage” and “Label
Conflicts”.
:myDatasetDistribution dqv:hasQualityMeasurement :measurement1, :measurement2 . :measurement1 a dqv:QualityMeasurement ; dqv:computedOn :myControlledVocabulary ; dqv:isMeasurementOf :numOfConceptsWithMissingValues ; dqv:value "1500"^^xsd:integer . :measurement2 a dqv:QualityMeasurement ; dqv:computedOn :myControlledVocabulary ; dqv:isMeasurementOf :numOfConceptsWithIncompleteLanguageCoverage ; dqv:value "450"^^xsd:integer .
(VoID) linksets are collections of (RDF) links between two datasets. Linksets are as important as datasets when it comes to the joint exploitation of independently served datasets in linked data. The representation of quality for a linkset offers a further example of how DQV can be exploited.
Let’s define three DCAT datasets, including one VoID linkset, which connects the two others:
:myDataset1 a dcat:Dataset ; dcterms:title "My dataset 1" . :myDataset2 a dcat:Dataset ; dcterms:title "My dataset 2" . :myLinkset a dcat:Dataset, void:Linkset ; dcterms:title "A Linkset between My dataset 1 and My dataset 2"; void:linkPredicate skos:exactMatch ; void:target :myDataset1 ; void:target :myDataset2 .
We can represent information about the quality of :myLinkset using the “Multilingual importing” [[MultilingualImporting]] linkset quality metric. This metrics works on linksets between datasets that include SKOS concepts [[SKOS-reference]]. It quantifies the information gain when adding the preferred labels or the alternative labels of the concepts from a linked dataset to the descriptions of the concepts from the other dataset, which these concepts have been matched with a skos:exactMatch statement from the linkset. We must first define the proper metric, dimension and category.
# Definition of instances for Metric, Dimension and Category. :importingForPropertyPercentage a dqv:Metric ; skos:definition "Ratio between novel preferred or alternative labels gained via skos:exactMatch links and preferred or alternative labels already in the dataset."@en dqv:expectedDataType xsd:double ; dqv:inDimension :completeness . :completenessGain a dqv:Dimension ; skos:prefLabel "Completeness Gain"@en ; skos:definition "Degree to which a linkset contributes to obtaining all required information in a particular dataset."@en ; dqv:inCategory :complementationGain . :complementationGain a dqv:Category ; skos:definition "Category that groups dimensions measuring the data quality gain obtained by exploiting linksets."@en .
The quality assessment of the "label importing" can depend on
two extra parameters: onProperty
and onLanguage
,
respectively the SKOS property and the language tag considered for measuring the completeness gains. We extend DQV
to represent these parameters.
:onLanguage a qb:DimensionProperty, owl:DataProperty ; rdfs:comment "language on which label importing is assessed."@en ; rdfs:domain dqv:QualityMeasurement; rdfs:label "label import assessment language"@en . :onProperty a qb:DimensionProperty, rdf:Property ; rdfs:comment "property on which label importing is assessed."@en ; rdfs:domain dqv:QualityMeasurement ; rdfs:label "label import assessment property"@en ; rdfs:range rdf:Property .
Let us add actual quality assessments:
:qualityMeasurementDataset a dqv:QualityMeasurementDataset ; qb:structure :dsd . :importingForPropertyPercentage dqv:hasObservation :measurement_exactMatchAltLabelItDataset1, :measurement_exactMatchAltLabelItDataset2, :measurement_exactMatchAltLabelEnDataset1, :measurement_exactMatchAltLabelEnDataset2, :measurement_exactMatchPrefLabelItDataset1, :measurement_exactMatchprefLabelItDataset2 . #Adding quality observations ## for Italian alternative labels :measurement_exactMatchAltLabelItDataset1 a dqv:QualityMeasurement; dqv:computedOn :myLinkset ; dqv:value "1.0"^^xsd:double ; dqv:isMeasurementOf :importingForPropertyPercentage ; qb:dataSet :qualityMeasurementDataset; :onLanguage "it" ; :onProperty skos:altLabel . :measurement_exactMatchAltLabelItDataset2 a dqv:QualityMeasurement; dqv:computedOn :myLinkset ; dqv:value "1.0"^^xsd:double ; dqv:isMeasurementOf :importingForPropertyPercentage ; qb:dataSet :qualityMeasurementDataset; :onLanguage "it" ; :onProperty skos:altLabel . ## for English alternative labels :measurement_exactMatchAltLabelEnDataset1 a dqv:QualityMeasurement; dqv:computedOn :myLinkset ; dqv:value "0.1"^^xsd:double ; dqv:isMeasurementOf :importingForPropertyPercentage ; qb:dataSet :qualityMeasurementDataset; :onLanguage "en" ; :onProperty skos:altLabel . :measurement_exactMatchAltLabelEnDataset2 a dqv:QualityMeasurement; dqv:computedOn :myLinkset ; dqv:value "1.0"^^xsd:double ; dqv:isMeasurementOf :importingForPropertyPercentage ; qb:dataSet :qualityMeasurementDataset; :onLanguage "en" ; :onProperty skos:altLabel . ## for Italian preferred labels :measurement_exactMatchPrefLabelItDataset1 a dqv:QualityMeasurement; dqv:computedOn :myLinkset ; dqv:value "0.5"^^xsd:double ; dqv:isMeasurementOf :importingForPropertyPercentage ; qb:dataSet :qualityMeasurementDataset; :onLanguage "it" ; :onProperty skos:prefLabel . :measurement_exactMatchprefLabelItDataset2 a dqv:QualityMeasurement; dqv:computedOn :myLinkset ; dqv:value "0.5"^^xsd:double ; dqv:isMeasurementOf :importingForPropertyPercentage ; qb:dataSet :qualityMeasurementDataset; :onLanguage "it" ; :onProperty skos:prefLabel .Let us specify the RDF Data Cube data structure which includes the two extra parameters:
:dsd a qb:DataStructureDefinition ; ##Copying the structure of daq:dsq qb:component [ qb:dimension dqv:computedOn ; qb:order 2 ] ; qb:component [ qb:measure dqv:value] ; qb:component [ qb:dimension <http://purl.org/linked-data/sdmx/2009/dimension#timePeriod> ; qb:order 3 ] ; qb:component [ qb:dimension dqv:isMeasurementOf ; qb:order 1 ] ; qb:component [ qb:measure dqv:value;]; # Attribute (here: unit of measurement) qb:component [ qb:attribute sdmx-attribute:unitMeasure ; qb:componentRequired false ; qb:componentAttachment qb:DataSet ; ] ; ##Extending the structure of lds:dsq with two new dimensions qb:component [ qb:dimension :onProperty ; qb:order 4 ] ; qb:component [ qb:dimension :onLanguage ; qb:order 5 ] .
It is often desirable to indicate that metadata about datasets in a catalogue are compliant with a metadata standard, or an application profile of an existing metadata standard. A typical example is the GeoDCAT Application Profile [[GeoDCAT-AP]], an extension of the DCAT vocabulary [[vocab-dcat]] to represent metadata for geospatial data portals. GeoDCAT-AP enables to express that a dataset's metadata conforms to an existing standard, following the recommendations of ISO 19115, ISO 19157 and the EU INSPIRE directive. DCAT partly supports the expression of such metadata conformance statements. The following example illustrates how a (DCAT) catalog record can be said to be conformant with the GeoDCAT-AP standard itself.
:myDataset a dcat:Dataset . :myDatasetRecord a dcat:CatalogRecord ; foaf:primaryTopic :myDataset ; dcterms:conformsTo :geoDCAT-AP . :geoDCAT-AP a dcterms:Standard; dcterms:title "GeoDCAT Application Profile. Version 1.0" ; dcterms:comment "GeoDCAT-AP is developed in the context of the Interoperability Solutions for European Public Administrations (ISA) Programme"@en; dcterms:issued "2015-12-23"^^xsd:date ; foaf:page <https://joinup.ec.europa.eu/asset/dcat_application_profile/asset_release/geodcat-ap-v10> .
Note that this example does not include the metadata about the
dataset ex:myDataset itself. We assume this is present in an RDF
data source accessible via the URI
ex:myDatasetRecord
. We also assume that
ex:geoDCAT-AP
is a reference URI that denotes the GeoDCAT-AP standard, which can
be re-used across many catalog record descriptions, not just a
locally introduced URI.
Finer-grained representation of conformance statements can be found in the literature, and applications with more complex requirements may implement them, including for example the requirement of representing 'non-conformance' tested by specific procedures. The GeoDCAT Application Profile, for example, suggests a "provisional mapping" for extended profiles, which re-uses the PROV data model for provenance (see Annex II.14 at [[GeoDCAT-AP]]). Such patterns come however at the cost of having to publish and exchange representations that are much more elaborate. They will also have to be aligned with the result of another ongoing efforts on data validation and the reporting thereof, as currently discussed around SHACL, for example. We have thus decided to postpone addressing these requirements for now.
DQV introduces the class dqv:QualityPolicy
to express that a Dataset or Distribution
follows a policy or agreement that is chiefly defined by data quality concerns.
DQV does not provide a complete framework for expressing policies.
The class dqv:QualityPolicy
is rather meant as an anchor point, through which
DQV implementers can relate properties and classes of policy-dedicated vocabularies,
such as ODRL [[ODRL]], to the core
elements that define quality of datasets and distributions.
The example below specifies that a data provider grants the permission to access
a dataset and commits to serve the data with a certain quality, more concretely,
99% availability of a SPARQL endpoint (distribution) associated with the dataset.
This is expressed in ODRL as an offer with a duty on the service provider
that states a constraint defined using a DQV metric (sparqlEndpointUptime
), for which measurements
have to be greater than a certain percentage (99). The odrl:assigner
is the issuer
of the policy statement; it is also the assignee of the duty to deliver the
distribution as the policy requires it. There is no explicitly mentioned recipient
for the policy itself, since this examples is about a generic data access scenario.
Note that instances of dqv:QualityPolicy
could be instances of
the class odrl:Agreement
,
in which case an odrl:assignee is likely to appear for the policy.
:serviceProvider a odrl:Party . :myDataset a dcat:Dataset ; dcat:distribution :myDatasetSparqlDistribution ; :myDatasetSparqlDistribution a dcat:Distribution . :policy1 a odrl:Offer, dqv:QualityPolicy ; odrl:permission [ a odrl:Permission ; odrl:target :myDataset ; odrl:action odrl:read ; odrl:assigner :serviceProvider; odrl:duty [ a odrl:Duty; odrl:assignee :serviceProvider; odrl:target :myDatasetSparqlDistribution ; odrl:constraint [ a odrl:Constraint ; prov:wasDerivedFrom :sparqlEndpointUptime; odrl:percentage "99"^^xsd:double ; odrl:operator odrl:gteq ] ] ] .
The expression of constraints in ODRL seems quite unfit with expressing general constraints on values in RDF graphs, as we would require here. However, ODRL can be easily extended, and is schedule to undergo refinement in the context of the W3C Permissions & Obligations Expression Working Group. In the future implementers should investigate whether a general constraint expression language like the coming SHACL [[SHACL]] provides a more appropriate mechanism to be used on top of ODRL permissions and duties.
The need for documenting data precision (also sometimes refered to as "resolution") is a common requirement, in particular, when dealing with spatial data. The following example shows how DQV can meet this requirement.
:myDataset a dcat:Dataset ; dqv:hasQualityMeasurement :myDatasetPrecision, :myDatasetAccuracy . :myDatasetPrecision a dqv:QualityMeasurement ; dqv:isMeasurementOf :spatialResolutionAsDistance ; dqv:value "1000"^^xsd:decimal ; sdmx-attribute:unitMeasure <http://www.wurvoc.org/vocabularies/om-1.8/metre> . :spatialResolutionAsDistance a dqv:Metric; skos:definition "Spatial resolution of a dataset expressed as distance"@en ; dqv:expectedDataType xsd:decimal ; dqv:inDimension dqv:precision .
Precision can be alternatively expressed without unit of measure specifying spatial resolution by means of an "equivalent scale" with a fraction (e.g., 1:1,000, 1:1,000,000)
:myDataset a dcat:Dataset; dqv:hasQualityMeasurement :myDatasetPrecisionES . :spatialResolutionAsEquivalentScale a dqv:Metric; skos:definition "Spatial resolution of a dataset expressed as equivalent scale, by using a representative fraction (e.g., 1:1,000, 1:1,000,000)."@en ; dqv:expectedDataType xsd:decimal ; dqv:inDimension dqv:precision . :myDatasetPrecisionES a dqv:QualityMeasurement ; dqv:isMeasurementOf :spatialResolutionAsEquivalentScale ; dqv:value "0.000001"^^xsd:decimal .
or specifying the angular distance.
:myDataset a dcat:Dataset; dqv:hasQualityMeasurement :myDatasetPrecisionAS . :spatialResolutionAsAngularDistance a dqv:Metric; skos:definition "Spatial resolution of a dataset expressed as angular distance"@en ; dqv:expectedDataType xsd:decimal ; dqv:inDimension dqv:precision . :myDatasetPrecisionAS a dqv:QualityMeasurement ; dqv:isMeasurementOf :spatialResolutionAsAngularDistance ; dqv:value "3.5"^^xsd:decimal ; sdmx-attribute:unitMeasure <http://www.wurvoc.org/vocabularies/om-1.8/degree> .
Note that the precision (or resolution) of a dataset is not equivalent to its accuracy. High precision values are not necessarily accurate. High precision values can even be pointless, as when one asserts that Magna Carta was signed at 1215-06-15T00:00:00
. Accuracy is nonetheless an important dimension of data quality. Data accuracy metrics and measurements can be represented with DQV, as in the following example:
:myDatasetAccuracy a dqv:QualityMeasurement ; dqv:isMeasurementOf :spatialAccuracy ; dqv:value "98.2"^^xsd:decimal sdmx-attribute:unitMeasure <http://www.wurvoc.org/vocabularies/om-1.8/Percentage> . :spatialAccuracy a dqv:Metric; skos:definition "Percentage of spatial elements that are found accurate according to methodology XYZ"@en ; dqv:expectedDataType xsd:decimal ; dqv:inDimension ldqd:semanticAccuracy .
This section gathers relevant quality dimensions and ideas for corresponding metrics, which might be eventually represented as instances of dqv:Category, dqv:Dimension and dqv:Metric. The goal of the Data Quality Vocabulary is not to define a normative list of dimensions and metrics. There are already several reference classifications available, which are the result of a lot of community work. Unifying them here seems both hard and not desirable, as fundamental approaches to quality vary between domains or even applications. This section provides instead a set of examples, starting from use cases included in the Use Cases & Requirements document. In particular, we offer the quality dimension proposed in ISO 25012 [[ISOIEC25012]] and Zaveri et al. [[ZaveriEtAl]] as two starting points. Ultimately, implementers will need to choose themselves the approach that fits best their needs. They can extend on these starting points, creating their own refinements of categories and dimensions, and of course their own metrics. They can mix existing approaches — we show that the proposals from ISO and Zaveri et al. are not completely disjoint. Implementers can also adopt completely different classifications, if existing ones do not fit their specific application scenarios. They should however be aware that relying on existing classifications and metrics increases interoperability, i.e., the chance that human and machine agents can properly understand and exploit their quality assessments.
The following table gives example on statistics that can be computed on a dataset and interpreted as quality indicators by the data consumer. Some of them can be relevant for the dimensions listed in the rest of this section. The properties come from the VoID extension created for the Aether tool.
Observation | Suggested term |
---|---|
Number of distinct external resources linked to | http://ldf.fi/void-ext#distinctIRIReferenceObjects |
Number of distinct external resources used (including schema terms) | http://ldf.fi/void-ext#distinctIRIReferences |
Number of distinct literals | http://ldf.fi/void-ext#distinctLiterals |
Number of languages used | http://ldf.fi/void-ext#languages |
The Aether VoID extension represents statistics as direct statements that have a dataset as subject and an integer as object. This pattern, which can be expected to be rather common, is different from the pattern that DQV inherits from daQ. Guidance on how DQV/daQ can work with other quality statistics vocabulary will be provided.
ISO/IEC 25012 provides an example of quality dimensions grouped in three categories that can be adopted to document the quality of datasets. These quality dimensions and categories are listed in the table below.
Category | Dimension | Definition |
---|---|---|
Inherent Data Quality | Accuracy | The degree to which data has attributes that correctly represent the true value of the intended attribute of a concept or event in a specific context of use. |
Completeness | The degree to which subject data associated with an entity has values for all expected attributes and related entity instances in a specific context of use. | |
Consistency | The degree to which data has attributes that are free from contradiction and are coherent with other data in a specific context of use. It can be either or both among data regarding one entity and across similar data for comparable entities. | |
Credibility | The degree to which data has attributes that are regarded as true and believable by users in a specific context of use. Credibility includes the concept of authenticity (the truthfulness of origins, attributions, commitments). | |
Currentness | The degree to which data has attributes that are of the right age in a specific context of use. | |
Inherent and System-Dependent Data Quality | Accessibility | The degree to which data can be accessed in a specific context of use, particularly by people who need supporting technology or special configuration because of some disability. |
Compliance | The degree to which data has attributes that adhere to standards, conventions or regulations in force and similar rules relating to data quality in a specific context of use. | |
Confidentiality | The degree to which data has attributes that ensure that it is only accessible and interpretable by authorized users in a specific context of use. Confidentiality is an aspect of information security (together with availability, integrity) as defined in ISO/IEC 13335-1:2004. | |
Efficiency | The degree to which data has attributes that can be processed and provide the expected levels of performance by using the appropriate amounts and types of resources in a specific context of use. | |
Precision | The degree to which data has attributes that are exact or that provide discrimination in a specific context of use. | |
Traceability | The degree to which data has attributes that provide an audit trail of access to the data and of any changes made to the data in a specific context of use. | |
Understandability | The degree to which data has attributes that enable it to be read and interpreted by users, and are expressed in appropriate languages, symbols and units in a specific context of use. Some information about data understandability are provided by metadata. | |
System-Dependent Data Quality | Availability | The degree to which data has attributes that enable it to be retrieved by authorized users and/or applications in a specific context of use. |
Portability | The degree to which data has attributes that enable it to be installed, replaced or moved from one system to another preserving the existing quality in a specific context of use. | |
Recoverability | The degree to which data has attributes that enable it to maintain and preserve a specified level of operations and quality, even in the event of failure, in a specific context of use. |
DQV can express the dimensions and categories listed in the
table above. The following example includes only an exemplification of the ISO dimensions and categories which should be authoritatively provided by ISO. Semantic relation defined in SKOS can be exploited to related categories and dimensions, for example, in the following, skos:broader
has been exploited to define iso:inherentSystemDependentDataQuality
as a specialization of iso:inherentDataQuality
and iso:systemDependentDataQuality
.
# definition of ISO categories iso:inherentDataQuality a dqv:Category ; skos:prefLabel "Inherent Data Quality"@en. iso:systemDependentDataQuality a dqv:Category ; skos:prefLabel "System-Dependent Data Quality"@en. iso:inherentSystemDependentDataQuality a dqv:Category ; skos:prefLabel "Inherent and System-Dependent Data Quality"@en. skos:broader iso:inherentDataQuality, iso:systemDependentDataQuality . # definition of ISO dimensions iso:accuracy a dqv:Dimension ; dqv:inCategory iso:inherentDataQuality ; skos:prefLabel "Accuracy"@en; skos:definition "The degree to which data has attributes that correctly represent the true value of the intended attribute of a concept or event in a specific context of use."@en . iso:completeness a dqv:Dimension ; dqv:inCategory iso:inherentDataQuality ; skos:prefLabel "Completeness"@en; skos:definition "The degree to which subject data associated with an entity has values for all expected attributes and related entity instances in a specific context of use."@en . iso:consistency a dqv:Dimension ; dqv:inCategory iso:inherentDataQuality ; skos:prefLabel "Consistency"@en; skos:definition "The degree to which data has attributes that are free from contradiction and are coherent with other data in a specific context of use. It can be either or both among data regarding one entity and across similar data for comparable entities."@en . # ... ... iso:accessibility a dqv:Dimension ; dqv:inCategory iso:inherentSystemDependentDataQuality ; skos:prefLabel "Accessibility"@en; skos:definition "The degree to which data can be accessed in a specific context of use, particularly by people who need supporting technology or special configuration because of some disability."@en . # ... etc ...
Zaveri et al. provides a review of quality dimensions, which is specifically suited for linked open data [[ZaveriEtAl]].
Category | Dimension | Definition |
---|---|---|
Accessibility dimensions | Availability | Availability of a dataset is the extent to which data (or some portion of it) is present, obtainable and ready for use. |
Licensing | Licensing is defined as the granting of permission for a consumer to re-use a dataset under defined conditions. | |
Interlinking | Interlinking refers to the degree to which entities that represent the same concept are linked to each other, be it within or between two or more data sources. | |
Security | Security is the extent to which data is protected against alteration and misuse. | |
Performance | Performance refers to the efficiency of a system that binds to a large dataset, that is, the more performant a data source is the more efficiently a system can process data. | |
Intrinsic dimensions | Syntactic validity | Syntactic validity is defined as the degree to which an RDF document conforms to the specification of the serialization format. |
Semantic accuracy | Semantic accuracy is defined as the degree to which data values correctly represent the real world facts. | |
Consistency | Consistency means that a knowledge base is free of (logical/formal) contradictions with respect to particular knowledge representation and inference mechanisms. | |
Conciseness | Conciseness refers to the minimization of redundancy of entities at the schema and the data level. | |
Completeness | Completeness refers to the degree to which all required information is present in a particular dataset. | |
Contextual dimensions | Relevancy | Relevancy refers to the provision of information which is in accordance with the task at hand and important to the users’ query. |
Trustworthiness | Trustworthiness is defined as the degree to which the information is accepted to be correct, true, real and credible. | |
Understandability | Understandability refers to the ease with which data can be comprehended without ambiguity and be used by a human information consumer. | |
Timeliness | Timeliness measures how up-to-date data is relative to a specific task. | |
Representational dimensions | Representational-conciseness | Representational-conciseness refers to the representation of the data, which is compact and well formatted on the one hand and clear and complete on the other hand. |
Interoperability | Interoperability is the degree to which the format and structure of the information conforms to previously returned information as well as data from other sources. | |
Interpretability | Interpretability refers to technical aspects of the data, that is, whether information is represented using an appropriate notation and whether the machine is able to process the data. | |
Versatility | Versatility refers to the availability of the data in different representations and in an internationalized way. |
DQV can express these dimensions and categories as shown in the following example. The encoding of all the dimensions and categories mentioned above can be found at http://www.w3.org/2016/05/ldqd.
# definition of categories from Zaveri et al ldqd:accessibilityDimensions a dqv:Category ; skos:prefLabel "Accessibility"@en. ldqd:intrinsicDimensions a dqv:Category ; skos:prefLabel "Intrinsic dimensions"@en. ldqd:contextualDimensions a dqv:Category ; skos:prefLabel "Contextual dimensions"@en. ldqd:representationalDimensions a dqv:Category ; skos:prefLabel "Representational Dimensions"@en. #definition of dimensions from Zaveri et al ldqd:availability a dqv:Dimension ; dqv:inCategory ldqd:accessibilityDimensions ; skos:prefLabel "Availability"@en; skos:definition "Availability of a dataset is the extent to which data (or some portion of it) is present, obtainable and ready for use."@en . ldqd:licensing a dqv:Dimension ; dqv:inCategory ldqd:accessibilityDimensions ; skos:prefLabel "Licensing"@en; skos:definition "Licensing is defined as the granting of permission for a consumer to re-use a dataset under defined conditions."@en . ldqd:interlinking a dqv:Dimension ; dqv:inCategory ldqd:accessibilityDimensions ; skos:prefLabel "Consistency"@en; skos:definition "Interlinking refers to the degree to which entities that represent the same concept are linked to each other, be it within or between two or more data sources."@en . # ... etc ...
In Zaveri Et Al. [[ZaveriEtAl]] some dimensions
are not completely independent and may be related. These relationships can be represented in DQV by using
the appropriate SKOS properties or by specilizing the SKOS properties if more
specific semantics must be expressed. For example, availability
is related to performance
and semantic accuracy
, whilst semanticAccuracy
is related to timeliness
,
trustworthiness
, consistency
, syntaticValidity
and completeness
.
ldqd:availability skos:related ldqd:performance , ldqd:interlinking . ldqd:semanticAccuracy skos:related ldqd:timeliness , ldqd:trustworthiness , ldqd:consistency , ldqd:syntaticValidity , ldqd:completeness , ldqd:interlinking . ldqd:consistency skos:related ldqd:conciseness , ldqd:syntaticValidity , ldqd:interoperability . ldqd:interoperability skos:related ldqd:conciseness , ldqd:syntaticValidity . ldqd:conciseness skos:related ldqd:completeness , ldqd:representationalConciseness . ldqd:interpretability skos:related ldqd:versatility . # Note: skos:related is a symmetric property, hence from every statement # ex:subject skos:related ex:object in this example, one can infer that # the statement ex:object skos:related ex:subject is true.
Dimensions can also be related across different categorizations. For example, in the following, we present two possible links between dimensions from ISO/IEC 25012 [[ISOIEC25012]] and Zaveri et al. Here we assume that completeness is equivalent across both classifications and that ISO's credibility is one specific facet of trustworthiness in Zaveri et al. (see Definition 12 in [[ZaveriEtAl]]). We pencil more such possible relationships in Annex C.
ldqd:completeness skos:exactMatch iso:completeness . ldqd:trustworthiness skos:narrowMatch iso:credibility .
This section presents examples of metrics inspired by those reviewed in Zaveri et al. [[ZaveriEtAl]], in order to further illustrate how dqv:Metric can be instantiated. Note that they are not all specific to linked data quality, as some dimensions in Zaveri et al. matches the dimensions of ISO/IEC 25012 (see previous sub-section and Annex).
These examples are just some of the possible ones. They show metrics for different dimensions and kinds of dataset distributions. We might consider reorganizing examples around specific criteria (e.g., include at least a metric for each dimension, or focus on metrics for a specific kind of distribition, e.g., RDF, JSON, CSV). We might also consider to add further examples about derived metrics, multivalued metrics and extra parameters, once we have solved the remaining issues.
:downloadURLAvailabilityMetric a dqv:Metric ; skos:definition "It checks if dcat:downloadURL is available and if its value is dereferenceable."@en ; dqv:inDimension ldqd:availability ; dqv:expectedDataType xsd:boolean . :sparqlAvailabilityMetric a dqv:Metric ; skos:definition "It checks if a void:sparqlEndpoint is specified for a dataset and if the server responds to a SPARQL query."@en ; dqv:inDimension ldqd:availability ; dqv:expectedDataType xsd:boolean . :misreportedContentTypeMetric a dqv:Metric ; skos:definition "It detects whether the HTTP response contains the header field stating the appropriate content type of the returned file, e.g. application/rdf+xml"@en ; dqv:inDimension ldqd:availability ; dqv:expectedDataType xsd:boolean . :licensingMetric a dqv:Metric ; skos:definition "It detects the indication of a license in a the DCAT/VoID description or in the dataset of a license itself."@en ; dqv:inDimension ldqd:licensing ; dqv:expectedDataType xsd:boolean . :highThroughput a dqv:Metric ; skos:definition "It represents the maximum number of answered HTTP-requests per second."@en ; dqv:inDimension ldqd:performance ; dqv:expectedDataType xsd:integer . :sparqlScalability a dqv:Metric ; skos:definition "It detects whether the time to answer an amount of ten requests divided by ten is not longer than the time it takes to answer one request."@en ; dqv:inDimension ldqd:performance ; dqv:expectedDataType xsd:boolean . :noRDFSyntaxError a dqv:Metric ; skos:definition "It returns the number of syntax errors detected by an RDF validator."@en ; dqv:inDimension ldqd:syntacticValidity; dqv:expectedDataType xsd:integer . :noJSONSyntaxError a dqv:Metric ; skos:definition "It returns the number of syntax errors detected by an JSON validator."@en ; dqv:inDimension ldqd:syntacticValidity; dqv:expectedDataType xsd:integer . :populationCompletenessMetric a dqv:Metric ; skos:definition "Ratio between the number of objects represented in the dataset and the number of objects expected to be represented according to the declared dataset scope."@en ; dqv:inDimension ldqd:completeness ; dqv:expectedDataType xsd:double .
The UCR document lists relevant requirement for data quality and granularity:
The aforementioned requirements have been further elaborated and extended by new use cases and examples, following discussions on the DWBP WG's mailing list, wiki pages (see here and here), as well as external contributions during the review process (see the general list of DQV issues that includes such external feedback).
The W3C Human Care and Life Science Community Group has created a DCAT profile for describing datasets. This is work is well visible and used in the HCLS community. DQV should be aligned with this profile if there are overlapping areas. Are there such areas? (Issue-221)
The editors acknowledge the chairs of this Working Group: Hadley Beeman, Yaso Córdova, Deirdre Lee and the staff contact Phil Archer.
The editors also gratefully acknowledge the contributions made to this document by all members of the working group, specially the contributions received from Ghislain Auguste Atemezing, Carlos Laufer, Annette Greiner, Michel Dumontier, Eric Stephan.
The editors would also like to thank comments received from non-members of this working group, such as Andrea Perego, Rachel E. Heaven, Linda van den Brink, Werner Bailer, Jon Blower, Guillaume Duffes, Davide Ceolin, Anisa Rula.
Changes since the previous version include:
The dimensions listed in ISO/IEC 25012 [[ISOIEC25012]] and Zaveri et al. [[ZaveriEtAl]] are not disjoint.
Assuming that dimensions are expressed as instances of skos:Concept
, the following table includes some of the correspondences that can be considered between these two classifications.
Dimension from Zaveri et al. | Dimension from ISO/IEC 25012 | Suggested mapping relation |
---|---|---|
Availability | Availability | skos:exactMatch |
Completeness | Completeness | skos:exactMatch |
Consistency | Consistency | skos:exactMatch |
Timeliness | Currentness | skos:exactMatch |
Interoperability | Portability | skos:relatedMatch |
Interoperability | Compliance | skos:relatedMatch |
Semantic Accuracy | Accuracy | skos:broadMatch |
Trustworthiness | Credibility | skos:narrowMatch |
Trustworthiness | Traceability | skos:relatedMatch |
Understandability | Understandability | skos:exactMatch |
Interpretability | Understandability | skos:relatedMatch |
Versatility | Understandability | skos:broadMatch |
Syntactic Validity | Accuracy | skos:broadMatch |
Syntactic Validity | Compliance | skos:broadMatch |
Licensing | Accessibility | skos:relatedMatch |
Security | Traceability | skos:relatedMatch |
Security | Confidentiality | skos:relatedMatch |
Performance | Efficiency | skos:exactMatch |
Interlinking | Availability | skos:broadMatch |
Representation-conciseness | Compliance | skos:broadMatch |