Examples from MathML4

Content Markup

Introduction

The Intent of Content Markup

The Structure and Scope of Content MathML Expressions

Strict Content MathML

Content Dictionaries

Content MathML Concepts

Content MathML Elements Encoding Expression Structure

Numbers <cn>

Rendering <cn>,<sep/>-Represented Numbers
Strict uses of <cn>
                        
<cn type="hexdouble">7F800000</cn>
                     
<math>
                        
<mrow><mi>hexdouble</mi><mo>⁡</mo><mrow><mo>(</mo><mrow></mrow><mo>)</mo></mrow></mrow>
                     
</math>
hexdouble()
Non-Strict uses of <cn>
                        <cn base="16">7FE0</cn>
                     
<math>
                        <msub><mrow></mrow><mn>16</mn></msub>
                     
</math>
16
                        <cn base="1000">10F</cn>
                     
<math>
                        <msub><mrow></mrow><mn>1000</mn></msub>
                     
</math>
1000
                        <cn type="rational">22<sep/>7</cn>
                     
<math>
                        <mfrac><mrow><cn>22</cn><mn>22</mn></mrow><mrow><cn>7</cn><mn>7</mn></mrow></mfrac>
                     
</math>
222277
                        
<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>

                     
<math>
                        
<mrow><mrow><cn> 12.3 </cn><mn> 12.3 </mn></mrow><mo>+</mo><mrow><cn> 5 </cn><mn> 5 </mn></mrow><mo>⁢</mo><mi>i</mi></mrow>

                     
</math>
12.3 12.3 + 5 5 i
                        
<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>
                     
<math>
                        
<mrow><mrow><cn> 2 </cn><mn> 2 </mn></mrow><mo>⁢</mo><msup><mi>e</mi><mrow><mrow><cn> 3.1415 </cn><mn> 3.1415 </mn></mrow><mo>⁢</mo><mi>i</mi></mrow></msup></mrow>
                     
</math>
2 2 e 3.1415 3.1415 i
Rewrite: cn sep
                  
<cn type="rational" base="b">n<sep/>d</cn>
               
<math>
                  
<msub><mrow><cn>n</cn><mn>n</mn></mrow><mn>b</mn></msub>
               
</math>
nnb
                  
<apply><csymbol cd="nums1">rational</csymbol>
  <cn type="integer" base="b">n</cn>
  <cn type="integer" base="b">d</cn>
</apply>
               
<math>
                  
<mfrac><msub><mrow></mrow><mn>b</mn></msub><msub><mrow></mrow><mn>b</mn></msub></mfrac>
               
</math>
bb
Rewrite: cn based_integer
                  
<cn type="integer" base="16">FF60</cn>
               
<math>
                  
<msub><mrow></mrow><mn>16</mn></msub>
               
</math>
16
                  
<apply><csymbol cd="nums1">based_integer</csymbol>
  <cn type="integer">16</cn>
  <cs>FF60</cs>
</apply>
               
<math>
                  
<mrow><mi>based_integer</mi><mo>⁡</mo><mrow><mo>(</mo><mrow></mrow><mo>,</mo><ms>FF60</ms><mo>)</mo></mrow></mrow>
               
</math>
based_integer(,FF60)
Rewrite: cn constant
                     <cn type="constant">c</cn>
                  
<math>
                     <mrow><mi>constant</mi><mo>⁡</mo><mrow><mo>(</mo><mrow></mrow><mo>)</mo></mrow></mrow>
                  
</math>
constant()
                     <csymbol cd="nums1">c2</csymbol>
                  
<math>
                     <mi>c2</mi>
                  
</math>
c2
Rewrite: cn presentation mathml
                     
<cn type="rational"><mi>P</mi><sep/><mi>Q</mi></cn>
                  
<math>
                     
<mfrac><mrow><mi>P</mi><mi>P</mi></mrow><mrow><mi>Q</mi><mi>Q</mi></mrow></mfrac>
                  
</math>
PPQQ
                     
<apply><csymbol cd="nums1">rational</csymbol>
 <semantics>
  <ci>p</ci>
  <annotation-xml encoding="MathML-Presentation">
   <mi>P</mi>
  </annotation-xml>
 </semantics>
 <semantics>
  <ci>q</ci>
  <annotation-xml encoding="MathML-Presentation">
   <mi>Q</mi>
  </annotation-xml>
 </semantics>
</apply>
                  
<math>
                     
<mfrac><mrow><mrow><mi>P</mi></mrow></mrow><mrow><mrow><mi>Q</mi></mrow></mrow></mfrac>
                  
</math>
PQ

Content Identifiers <ci>

               <ci>x</ci>
            
<math>
               <mi>x</mi>
            
</math>
x
Strict uses of <ci>
                  <ci type="integer">n</ci>
               
<math>
                  <mi>n</mi>
               
</math>
n
                  
<semantics>
  <ci>n</ci>
  <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">
    <csymbol cd="mathmltypes">integer_type</csymbol>
  </annotation-xml>
</semantics>
               
<math>
                  
<mrow><mi>n</mi></mrow>
               
</math>
n
Non-Strict uses of <ci>
Rewrite: ci type annotation
                     <ci type="T">n</ci>
                  
<math>
                     <mi>n</mi>
                  
</math>
n
                     
<semantics>
  <ci>n</ci>
  <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">
    <ci>T</ci>
  </annotation-xml>
</semantics>
                  
<math>
                     
<mrow><mi>n</mi></mrow>
                  
</math>
n
Rewrite: ci presentation mathml
                     <ci><mi>P</mi></ci>
                  
<math>
                     <mrow><mi>P</mi></mrow>
                  
</math>
P
                     
<semantics>
  <ci>p</ci>
  <annotation-xml encoding="MathML-Presentation">
    <mi>P</mi>
  </annotation-xml>
</semantics>
                  
<math>
                     
<mrow><mrow><mi>P</mi></mrow></mrow>
                  
</math>
P
                  
<ci>
  <msup><mi>C</mi><mn>2</mn></msup>
</ci>
               
<math>
                  
<mrow><msup><mi>C</mi><mn>2</mn></msup></mrow>
               
</math>
C2
                  
<semantics>
  <ci>C2</ci>
  <annotation-xml encoding="MathML-Presentation">
    <msup><mi>C</mi><mn>2</mn></msup>
  </annotation-xml>
</semantics>
               
<math>
                  
<mrow><mrow><msup><mi>C</mi><mn>2</mn></msup></mrow></mrow>
               
</math>
C2
Rendering Content Identifiers
                  <ci type="vector">V</ci>
               
<math>
                  <mi>V</mi>
               
</math>
V

Content Symbols <csymbol>

Strict uses of <csymbol>
Non-Strict uses of <csymbol>
Rewrite: csymbol type annotation
                     <csymbol type="T">symbolname</csymbol>
                  
<math>
                     <mi>symbolname</mi>
                  
</math>
symbolname
                     
<semantics>
  <csymbol>symbolname</csymbol>
  <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">
    <ci>T</ci>
  </annotation-xml>
</semantics>
                  
<math>
                     
<mrow><mi>symbolname</mi></mrow>
                  
</math>
symbolname
Rendering Symbols

String Literals <cs>

               
<set>
  <cs>A</cs><cs>B</cs><cs>  </cs>
</set>
            
<math>
               
<mo>{</mo><mrow><ms>A</ms><mo>,</mo><ms>B</ms><mo>,</mo><ms>  </ms></mrow><mo>}</mo>
            
</math>
{A,B, }

Function Application <apply>

Strict Content MathML
                  <apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>
               
<math>
                  <mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow>
               
</math>
x+y
                  
<apply><csymbol cd="arith1">plus</csymbol>
  <ci>x</ci>
  <ci>y</ci>
  <ci>z</ci>
</apply>
               
<math>
                  
<mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi></mrow>
               
</math>
x+y+z
                  
<apply><csymbol cd="arith1">plus</csymbol>
  <apply><csymbol cd="arith1">times</csymbol>
    <ci>a</ci>
    <ci>x</ci>
  </apply>
  <ci>b</ci>
</apply>
               
<math>
                  
<mrow><mrow><mi>a</mi><mo>⁢</mo><mi>x</mi></mrow><mo>+</mo><mi>b</mi></mrow>
               
</math>
ax+b
                  
<apply><csymbol cd="arith1">times</csymbol>
  <apply><csymbol cd="arith1">plus</csymbol>
    <ci>F</ci>
    <ci>G</ci>
  </apply>
  <ci>x</ci>
</apply>
               
<math>
                  
<mrow><mrow><mo>(</mo><mi>F</mi><mo>+</mo><mi>G</mi><mo>)</mo></mrow><mo>⁢</mo><mi>x</mi></mrow>
               
</math>
(F+G)x
                  <apply><csymbol cd="arith1">plus</csymbol><ci>F</ci><ci>G</ci></apply>
               
<math>
                  <mrow><mi>F</mi><mo>+</mo><mi>G</mi></mrow>
               
</math>
F+G
                  
<apply>
  <apply><csymbol cd="arith1">plus</csymbol>
    <ci>F</ci>
    <ci>G</ci>
  </apply>
  <ci>x</ci>
</apply>
               
<math>
                  
<mrow><mrow><mi>F</mi><mo>+</mo><mi>G</mi></mrow><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow>
               
</math>
F+G(x)
Rendering Applications
                  
<apply><ci>f</ci>
  <ci>a1</ci>
  <ci>a2</ci>
  <ci>...</ci>
  <ci>an</ci>
</apply>
               
<math>
                  
<mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a1</mi><mo>,</mo><mi>a2</mi><mo>,</mo><mi>...</mi><mo>,</mo><mi>an</mi><mo>)</mo></mrow></mrow>
               
</math>
f(a1,a2,...,an)
                  
<apply><ci>op</ci>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>d</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
               
<math>
                  
<mrow><mi>op</mi><mo>⁡</mo><mrow><mo>(</mo><mi>expression-in-x</mi><mo>)</mo></mrow></mrow>
               
</math>
op(expression-in-x)

Bindings and Bound Variables <bind> and <bvar>

Bindings
Bound Variables
                  
<bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci id="var-x">x</ci></bvar>
  <apply><csymbol cd="relation1">lt</csymbol>
    <ci xref="var-x">x</ci>
    <cn>1</cn>
  </apply>
</bind>
               
<math>
                  
<mrow><mo>∀</mo><mi>x</mi><mo>.</mo><mrow><mi>x</mi><mo>&gt;</mo><mn>1</mn></mrow></mrow>
               
</math>
x.x>1
               
<bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="relation1">eq</csymbol>
    <apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>
    <apply><csymbol cd="arith1">plus</csymbol><ci>y</ci><ci>x</ci></apply>
  </apply>
</bind>
            
<math>
               
<mrow><mo>∀</mo><mi>x</mi><mo>.</mo><mrow><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow><mo>=</mo><mrow><mi>y</mi><mo>+</mo><mi>x</mi></mrow></mrow></mrow>
            
</math>
x.x+y=y+x
Renaming Bound Variables
Rendering Binding Constructions
                  
<bind><ci>b</ci>
  <bvar><ci>x1</ci></bvar>
  <bvar><ci>...</ci></bvar>
  <bvar><ci>xn</ci></bvar>
  <ci>s</ci>
</bind>
               
<math>
                  
<mrow><mi>b</mi><mo>⁡</mo><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow>
               
</math>
b(s)

Structure Sharing <share>

The share element
                              
<apply><ci>f</ci>
  <apply><ci>f</ci>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
  </apply>
  <apply><ci>f</ci>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
  </apply>
</apply>
                           
<math>
                              
<mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>)</mo></mrow></mrow><mo>,</mo><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>,</mo><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>)</mo></mrow></mrow><mo>,</mo><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow>
                           
</math>
f(f(f(a,a),f(a,a)),f(f(a,a),f(a,a)))
                              
<apply><ci>f</ci>
  <apply id="t1"><ci>f</ci>
    <apply id="t11"><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
    <share src="#t11"/>



  </apply>
  <share src="#t1"/>









</apply>
                           
<math>
                              
<mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>)</mo></mrow></mrow><mo>,</mo><mi href="null">sharenull</mi><mo>)</mo></mrow></mrow><mo>,</mo><mi href="null">sharenull</mi><mo>)</mo></mrow></mrow>
                           
</math>
f(f(f(a,a),sharenull),sharenull)
An Acyclicity Constraint
Structure Sharing and Binding
                  
<bind id="outer"><csymbol cd="fns1">lambda</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><ci>f</ci>
    <bind id="inner"><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <share id="copy" src="#orig"/>
    </bind>
    <apply id="orig"><ci>g</ci><ci>x</ci></apply>
  </apply>
</bind>
               
<math>
                  
<mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mi href="null">sharenull</mi></mrow><mo>,</mo><mrow><mi>g</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow>
               
</math>
λx.f(λx.sharenull,g(x))
Rendering Expressions with Structure Sharing

Attribution via semantics

Error Markup <cerror>

               
<cerror>
  <csymbol cd="aritherror">DivisionByZero</csymbol>
  <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>
</cerror>
            
<math>
               
<merror><mi>DivisionByZero</mi><mrow><mi>x</mi><mo>/</mo><mn>0</mn></mrow></merror>
            
</math>
DivisionByZerox/0
               
<apply><csymbol cd="relation1">eq</csymbol>
  <cerror>
    <csymbol cd="aritherror">DivisionByZero</csymbol>
    <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>
  </cerror>
  <cn>0</cn>
</apply>
            
<math>
               
<mrow><merror><mi>DivisionByZero</mi><mrow><mi>x</mi><mo>/</mo><mn>0</mn></mrow></merror><mo>=</mo><mn>0</mn></mrow>
            
</math>
DivisionByZerox/0=0
               
<cerror>
  <csymbol cd="aritherror">DivisionByZero</csymbol>
  <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>
</cerror>
            
<math>
               
<merror><mi>DivisionByZero</mi><mrow><mi>x</mi><mo>/</mo><mn>0</mn></mrow></merror>
            
</math>
DivisionByZerox/0
               
<cerror>
  <csymbol cd="error">Illegal bound variable</csymbol>
  <cs> &lt;bvar&gt;&lt;plus/&gt;&lt;/bvar&gt; </cs>
</cerror>
            
<math>
               
<merror><mi>Illegal bound variable</mi><ms> &lt;bvar&gt;&lt;plus/&gt;&lt;/bvar&gt; </ms></merror>
            
</math>
Illegal bound variable <bvar><plus/></bvar>

Encoded Bytes <cbytes>

Content MathML for Specific Structures

Container Markup

Container Markup for Constructor Symbols
                     <set><ci>a</ci><ci>b</ci><ci>c</ci></set>
                  
<math>
                     <mo>{</mo><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow><mo>}</mo>
                  
</math>
{a,b,c}
                     <apply><csymbol cd="set1">set</csymbol><ci>a</ci><ci>b</ci><ci>c</ci></apply>
                  
<math>
                     <mo>{</mo><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow><mo>}</mo>
                  
</math>
{a,b,c}
                     
<set>
  <bvar><ci>x</ci></bvar> 
  <domainofapplication><integers/></domainofapplication>
  <apply><times/><cn>2</cn><ci>x</ci></apply>
</set>
                  
<math>
                     
<mo>{</mo><mrow><mrow><mn>2</mn><mo>⁢</mo><mi>x</mi></mrow></mrow><mo>|</mo><mrow><bvar><mi>x</mi></bvar></mrow><mo>∈</mo><mrow><mrow><mi>ℤ</mi></mrow></mrow><mo>}</mo>
                  
</math>
{2x|x}
                     
<apply><csymbol cd="set1">map</csymbol>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <apply><csymbol cd="arith1">times</csymbol>
      <cn>2</cn>
      <ci>x</ci>
    </apply>
  </bind>
  <csymbol cd="setname1">Z</csymbol>
</apply>
                  
<math>
                     
<mrow><mi>map</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mrow><mn>2</mn><mo>⁢</mo><mi>x</mi></mrow></mrow><mo>,</mo><mi>Z</mi><mo>)</mo></mrow></mrow>
                  
</math>
map(λx.2x,Z)
Container Markup for Binding Constructors
                  <lambda><bvar><ci>x</ci></bvar><ci>x</ci></lambda>
               
<math>
                  <mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mi>x</mi></mrow>
               
</math>
λx.x
                  
<bind><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>x</ci></bvar><ci>x</ci>
</bind>
               
<math>
                  
<mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mi>x</mi></mrow>
               
</math>
λx.x

Bindings with <apply>

                  
<apply><forall/>
  <bvar><ci>x</ci></bvar>
  <apply><geq/><ci>x</ci><ci>x</ci></apply>
</apply>
               
<math>
                  
<mrow><mo>∀</mo><mi>x</mi><mo>.</mo><mrow><mi>x</mi><mo>≥</mo><mi>x</mi></mrow></mrow>
               
</math>
x.xx
                  
<bind><csymbol cd="logic1">forall</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="relation1">geq</csymbol><ci>x</ci><ci>x</ci></apply>
</bind>
               
<math>
                  
<mrow><mo>∀</mo><mi>x</mi><mo>.</mo><mrow><mi>x</mi><mo>≥</mo><mi>x</mi></mrow></mrow>
               
</math>
x.xx
                  
<apply><sum/>
  <bvar><ci>i</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>100</cn></uplimit>
  <apply><power/><ci>x</ci><ci>i</ci></apply>
</apply>
               
<math>
                  
<mrow><munderover><mo>∑</mo><mrow><ci>i</ci><mo>=</mo><mn>0</mn></mrow><mjrow><mn>100</mn></mjrow></munderover><msup><mi>x</mi><mi>i</mi></msup></mrow>
               
</math>
i=0100xi
                  
<apply><csymbol cd="arith1">sum</csymbol>
  <apply><csymbol cd="interval1">integer_interval</csymbol>
    <cn>0</cn>
    <cn>100</cn>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>i</ci></bvar>
    <apply><csymbol cd="arith1">power</csymbol>
      <ci>x</ci>
      <ci>i</ci>
    </apply>
  </bind>
</apply>
               
<math>
                  
<mrow><munderover><mo>∑</mo><mrow></mrow><mjrow></mjrow></munderover><mrow><mi>integer_interval</mi><mo>⁡</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>100</mn><mo>)</mo></mrow></mrow><mrow><mo>λ</mo><mi>i</mi><mo>.</mo><msup><mi>x</mi><mi>i</mi></msup></mrow></mrow>
               
</math>
integer_interval(0,100)λi.xi

Qualifiers

Uses of <domainofapplication>, <interval>, <condition>, <lowlimit> and <uplimit>
                  
<apply><int/>
  <domainofapplication>
    <ci type="set">C</ci>
  </domainofapplication>
  <ci type="function">f</ci>
</apply>
               
<math>
                  
<mrow><msubsup><mo>∫</mo><mrow><mi>C</mi></mrow><mrow></mrow></msubsup><mi>f</mi></mrow>
               
</math>
Cf
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <interval><cn>0</cn><cn>1</cn></interval>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
<math>
                  
<mrow><msubsup><mo>∫</mo><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><msup><mi>x</mi><mn>2</mn></msup><mrow><mi>d</mi><mi>x</mi></mrow></mrow>
               
</math>
01x2dx
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>1</cn></uplimit>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
<math>
                  
<mrow><msubsup><mo>∫</mo><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><msup><mi>x</mi><mn>2</mn></msup><mrow><mi>d</mi><mi>x</mi></mrow></mrow>
               
</math>
01x2dx
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><and/>
      <apply><leq/><cn>0</cn><ci>x</ci></apply>
      <apply><leq/><ci>x</ci><cn>1</cn></apply>
    </apply>
  </condition>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
<math>
                  
<mrow><msubsup><mo>∫</mo><mrow><mrow><mrow><mo>(</mo><mn>0</mn><mo>≤</mo><mi>x</mi><mo>)</mo></mrow><mo>∧</mo><mrow><mo>(</mo><mi>x</mi><mo>≤</mo><mn>1</mn><mo>)</mo></mrow></mrow></mrow><mrow></mrow></msubsup><msup><mi>x</mi><mn>2</mn></msup><mrow><mi>d</mi><mi>x</mi></mrow></mrow>
               
</math>
(0x)(x1)x2dx
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <domainofapplication>
    <set>
      <bvar><ci>t</ci></bvar>
      <bvar><ci>u</ci></bvar>
      <condition>
        <apply><and/>
          <apply><leq/><cn>0</cn><ci>t</ci></apply>
          <apply><leq/><ci>t</ci><cn>1</cn></apply>
          <apply><leq/><cn>0</cn><ci>u</ci></apply>
          <apply><leq/><ci>u</ci><cn>1</cn></apply>
        </apply>
      </condition>
      <list><ci>t</ci><ci>u</ci></list>
    </set>
  </domainofapplication>
  <apply><times/>
    <apply><power/><ci>x</ci><cn>2</cn></apply>
    <apply><power/><ci>y</ci><cn>3</cn></apply>
  </apply>
</apply>
               
<math>
                  
<mrow><msubsup><mo>∫</mo><mrow><mo>{</mo><mrow><mo>(</mo><mrow><mi>t</mi><mo>,</mo><mi>u</mi></mrow><mo>)</mo></mrow><mo>|</mo><mrow><mrow><mrow><mrow><mo>(</mo><mn>0</mn><mo>≤</mo><mi>t</mi><mo>)</mo></mrow><mo>∧</mo><mrow><mo>(</mo><mi>t</mi><mo>≤</mo><mn>1</mn><mo>)</mo></mrow><mo>∧</mo><mrow><mo>(</mo><mn>0</mn><mo>≤</mo><mi>u</mi><mo>)</mo></mrow><mo>∧</mo><mrow><mo>(</mo><mi>u</mi><mo>≤</mo><mn>1</mn><mo>)</mo></mrow></mrow></mrow></mrow><mo>}</mo></mrow><mrow></mrow></msubsup><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>⁢</mo><msup><mi>y</mi><mn>3</mn></msup></mrow><mrow><mi>d</mi><mi>x</mi></mrow><mrow><mi>d</mi><mi>y</mi></mrow></mrow>
               
</math>
{(t,u)|(0t)(t1)(0u)(u1)}x2y3dxdy
Rewrite: interval qualifier
                  
<apply><ci>H</ci>
  <bvar><ci>x</ci></bvar>
  <lowlimit><ci>a</ci></lowlimit>
  <uplimit><ci>b</ci></uplimit>
  <ci>C</ci>
</apply>
               
<math>
                  
<mrow><mi>H</mi><mo>⁡</mo><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mrow>
               
</math>
H(C)
                  
<apply><ci>H</ci>
  <bvar><ci>x</ci></bvar>
  <domainofapplication>
    <apply><csymbol cd="interval1">interval</csymbol>
      <ci>a</ci>
      <ci>b</ci>
    </apply>
  </domainofapplication>
  <ci>C</ci>
</apply>
               
<math>
                  
<mrow><mi>H</mi><mo>⁡</mo><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mrow>
               
</math>
H(C)
Rewrite: condition
Rewrite: restriction
                  
<apply><ci>F</ci>
  <domainofapplication>
    <ci>C</ci>
  </domainofapplication>
  <ci>a1</ci>
  <ci>an</ci>
</apply>
               
<math>
                  
<mrow><mi>F</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a1</mi><mo>,</mo><mi>an</mi><mo>)</mo></mrow></mrow>
               
</math>
F(a1,an)
                  
<apply>
  <apply><csymbol cd="fns1">restriction</csymbol>
    <ci>F</ci>
    <ci>C</ci>
  </apply>
  <ci>a1</ci>
  <ci>an</ci>
</apply>
               
<math>
                  
<mrow><mrow><mi>restriction</mi><mo>⁡</mo><mrow><mo>(</mo><mi>F</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow><mo>⁡</mo><mrow><mo>(</mo><mi>a1</mi><mo>,</mo><mi>an</mi><mo>)</mo></mrow></mrow>
               
</math>
restriction(F,C)(a1,an)
Rewrite: apply bvar domainofapplication
Uses of <degree>
               
<apply><diff/>
  <bvar>
    <ci>x</ci>
    <degree><cn>2</cn></degree>
  </bvar>
  <apply><power/><ci>x</ci><cn>4</cn></apply>
</apply>
            
<math>
               
<mfrac><mrow><msup><mi>d</mi><mn>2</mn></msup><msup><mi>x</mi><mn>4</mn></msup></mrow><mrow><mi>d</mi><msup><ci>x</ci><mn>2</mn></msup></mrow></mfrac>
            
</math>
d2x4dx2
Uses of <momentabout> and <logbase>

Operator Classes

Rewrite: element
               <plus/>
            
<math>
               <mi>plus</mi>
            
</math>
plus
                  <csymbol cd="arith1">plus</csymbol>
               
<math>
                  <mi>plus</mi>
               
</math>
plus
N-ary Operators (classes nary-arith, nary-functional, nary-logical, nary-linalg, nary-set, nary-constructor)
Schema Patterns
Rewriting to Strict Content MathML
Rewrite: n-ary domainofapplication
                        
<apply><union/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
                     
<math>
                        
<mrow><mi>expression-in-x</mi></mrow>
                     
</math>
expression-in-x
                        
<apply><csymbol cd="fns2">apply_to_list</csymbol>
  <csymbol cd="set1">union</csymbol>
  <apply><csymbol cd="list1">map</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <ci>expression-in-x</ci>
    </bind>
    <ci>D</ci>
  </apply>
</apply>
                     
<math>
                        
<mrow><mi>apply_to_list</mi><mo>⁡</mo><mrow><mo>(</mo><mi>union</mi><mo>,</mo><mrow><mi>map</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mi>expression-in-x</mi></mrow><mo>,</mo><mi>D</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow>
                     
</math>
apply_to_list(union,map(λx.expression-in-x,D))
N-ary Constructors for set and list (class nary-setlist-constructor)
Schema Patterns
Rewriting to Strict Content MathML
Rewrite: n-ary setlist domainofapplication
                        
<set>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</set>
                     
<math>
                        
<mo>{</mo><mrow><mi>expression-in-x</mi></mrow><mo>|</mo><mrow><bvar><mi>x</mi></bvar></mrow><mo>∈</mo><mrow><mrow><mi>D</mi></mrow></mrow><mo>}</mo>
                     
</math>
{expression-in-x|xD}
                        
<apply><csymbol cd="set1">map</csymbol>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>expression-in-x</ci>
  </bind>
  <ci>D</ci>
</apply>
                     
<math>
                        
<mrow><mi>map</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mi>expression-in-x</mi></mrow><mo>,</mo><mi>D</mi><mo>)</mo></mrow></mrow>
                     
</math>
map(λx.expression-in-x,D)
N-ary Relations (classes nary-reln, nary-set-reln)
Schema Patterns
Rewriting to Strict Content MathML
Rewrite: n-ary relations
                        
<apply><lt/>
  <ci>a</ci><ci>b</ci><ci>c</ci><ci>d</ci>
</apply>
                     
<math>
                        
<mrow><mi>a</mi><mo>&gt;</mo><mi>b</mi><mo>&gt;</mo><mi>c</mi><mo>&gt;</mo><mi>d</mi></mrow>
                     
</math>
a>b>c>d
                        
<apply><csymbol cd="fns2">predicate_on_list</csymbol>
 <csymbol cd="reln1">lt</csymbol>
 <apply><csymbol cd="list1">list</csymbol>
  <ci>a</ci><ci>b</ci><ci>c</ci><ci>d</ci>
 </apply>
</apply>

                     
<math>
                        
<mrow><mi>predicate_on_list</mi><mo>⁡</mo><mrow><mo>(</mo><mi>lt</mi><mo>,</mo><mo>(</mo><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi></mrow><mo>)</mo><mo>)</mo></mrow></mrow>

                     
</math>
predicate_on_list(lt,(a,b,c,d))
Rewrite: n-ary relations bvar
                        
<apply><lt/>
 <bvar><ci>x</ci></bvar>
 <domainofapplication><ci>R</ci></domainofapplication>
 <ci>expression-in-x</ci>
</apply>
                     
<math>
                        
<mrow><mi>expression-in-x</mi></mrow>
                     
</math>
expression-in-x
                        
<apply><csymbol cd="fns2">predicate_on_list</csymbol>
 <csymbol cd="reln1">lt</csymbol>
 <apply><csymbol cd="list1">map</csymbol>
   <ci>R</ci>
   <bind><csymbol cd="fns1">lambda</csymbol>
     <bvar><ci>x</ci></bvar>
     <ci>expression-in-x</ci>
   </bind>
  </apply>
</apply>
                     
<math>
                        
<mrow><mi>predicate_on_list</mi><mo>⁡</mo><mrow><mo>(</mo><mi>lt</mi><mo>,</mo><mrow><mi>map</mi><mo>⁡</mo><mrow><mo>(</mo><mi>R</mi><mo>,</mo><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mi>expression-in-x</mi></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow>
                     
</math>
predicate_on_list(lt,map(R,λx.expression-in-x))
N-ary/Unary Operators (classes nary-minmax, nary-stats)
Schema Patterns
Rewriting to Strict Content MathML
Rewrite: n-ary unary set
                     
<apply><max/><ci>a1</ci><ci>a2</ci><ci>an</ci></apply>
                  
<math>
                     
<mrow><mi>max</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a1</mi><mo>,</mo><mi>a2</mi><mo>,</mo><mi>an</mi><mo>)</mo></mrow></mrow>
                  
</math>
max(a1,a2,an)
                     
<apply><csymbol cd="minmax1">max</csymbol>
  <apply><csymbol cd="set1">set</csymbol>
    <ci>a1</ci><ci>a2</ci><ci>an</ci>
  </apply>
</apply>
                  
<math>
                     
<mrow><mi>max</mi><mo>⁡</mo><mrow><mo>(</mo><mo>{</mo><mrow><mi>a1</mi><mo>,</mo><mi>a2</mi><mo>,</mo><mi>an</mi></mrow><mo>}</mo><mo>)</mo></mrow></mrow>
                  
</math>
max({a1,a2,an})
Rewrite: n-ary unary domainofapplication
                        
<apply><max/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
                     
<math>
                        
<mrow><mi>max</mi><mo>⁡</mo><mrow><mo>(</mo><mi>expression-in-x</mi><mo>)</mo></mrow></mrow>
                     
</math>
max(expression-in-x)
                        
<apply><csymbol cd="minmax1">max</csymbol>
  <apply><csymbol cd="set1">map</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <ci>expression-in-x</ci>
    </bind>
    <ci>D</ci>
  </apply>
</apply>
                     
<math>
                        
<mrow><mi>max</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>map</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mi>expression-in-x</mi></mrow><mo>,</mo><mi>D</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow>
                     
</math>
max(map(λx.expression-in-x,D))
Rewrite: n-ary unary single
                     
<apply><max/><ci>a</ci></apply>
                  
<math>
                     
<mrow><mi>max</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow>
                  
</math>
max(a)
                     
<apply><csymbol cd="minmax1">max</csymbol> <ci>a</ci> </apply>
                  
<math>
                     
<mrow><mi>max</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow>
                  
</math>
max(a)
Binary Operators (classes binary-arith, binary-logical, binary-reln, binary-linalg, binary-set)
Schema Patterns
Unary Operators (classes unary-arith, unary-linalg, unary-functional, unary-set, unary-elementary, unary-veccalc)
Schema Patterns
Constants (classes constant-arith, constant-set)
Schema Patterns
Quantifiers (class quantifier)
Schema Patterns
Rewriting to Strict Content MathML
Rewrite: quantifier
                        
<apply><exists/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
                     
<math>
                        
<mrow><mo>∃</mo><mi>x</mi><mo>∈</mo><mi>D</mi><mo>.</mo><mi>expression-in-x</mi></mrow>
                     
</math>
xD.expression-in-x
                        
<bind><csymbol cd="quant1">exists</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="logic1">and</csymbol>
    <apply><csymbol cd="set1">in</csymbol><ci>x</ci><ci>D</ci></apply>
  <ci>expression-in-x</ci>
  </apply>
</bind>

                     
<math>
                        
<mrow><mo>∃</mo><mi>x</mi><mo>.</mo><mrow><mrow><mi>x</mi><mo>∈</mo><mi>D</mi></mrow><mo>∧</mo><mi>expression-in-x</mi></mrow></mrow>

                     
</math>
x.xDexpression-in-x
Other Operators (classes lambda, interval, int, diff partialdiff, sum, product, limit)
Schema Patterns

Non-strict Attributes

Rewrite: attributes
                  
<ci class="foo" xmlns:other="http://example.com" other:att="bla">x</ci>
               
<math>
                  
<mi>x</mi>
               
</math>
x
                  
<semantics>
  <ci>x</ci>
  <annotation cd="mathmlattr"
     name="class" encoding="text/plain">foo</annotation>
  <annotation-xml cd="mathmlattr" name="foreign" encoding="MathML-Content">
    <apply><csymbol cd="mathmlattr">foreign_attribute</csymbol>
      <cs>http://example.com</cs>
      <cs>other</cs>
      <cs>att</cs>
      <cs>bla</cs>
    </apply>
  </annotation-xml>
</semantics>
               
<math>
                  
<mrow><mi>x</mi></mrow>
               
</math>
x

Content MathML for Specific Operators and Constants

Functions and Inverses

Interval <interval>
                  
<interval closure="open"><ci>x</ci><cn>1</cn></interval>
               
<math>
                  
<mo>(</mo><mrow><mi>x</mi><mo>,</mo><mn>1</mn></mrow><mo>)</mo>
               
</math>
(x,1)
                  
<interval closure="closed"><cn>0</cn><cn>1</cn></interval>
               
<math>
                  
<mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow><mo>]</mo>
               
</math>
[0,1]
                  
<interval closure="open-closed"><cn>0</cn><cn>1</cn></interval>
               
<math>
                  
<mo>(</mo><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow><mo>]</mo>
               
</math>
(0,1]
                  
<interval closure="closed-open"><cn>0</cn><cn>1</cn></interval>
               
<math>
                  
<mo>[</mo><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow><mo>)</mo>
               
</math>
[0,1)
Inverse <inverse>
                  
<apply><inverse/>
  <ci> f </ci>
</apply>
               
<math>
                  
<msup><mi> f </mi><mfenced><mn>-1</mn></mfenced></msup>
               
</math>
f -1
                  
<apply>
  <apply><inverse/><ci type="matrix">A</ci></apply>
  <ci>a</ci>
</apply>
               
<math>
                  
<mrow><msup><mi>A</mi><mfenced><mn>-1</mn></mfenced></msup><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow>
               
</math>
A-1(a)
Lambda <lambda>
                  
<lambda>
  <bvar><ci> x </ci></bvar>
  <domainofapplication><integers/></domainofapplication>
  <apply><sin/><ci> x </ci></apply>
</lambda>
               
<math>
                  
<mrow><mo>λ</mo><mi> x </mi><mo>∈</mo><mi>ℤ</mi><mo>.</mo><mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mi> x </mi><mo>)</mo></mrow></mrow></mrow>
               
</math>
λ x .sin( x )
                  
<lambda>
  <domainofapplication><integers/></domainofapplication> 
  <sin/>
</lambda>
               
<math>
                  
<mrow><mi>sin</mi><msub><mo>|</mo><mrow><mi>ℤ</mi></mrow></msub></mrow>
               
</math>
sin|
                  
<lambda>
  <bvar><ci>x</ci></bvar>
  <apply><sin/>
    <apply><plus/><ci>x</ci><cn>1</cn></apply>
  </apply>
</lambda>
               
<math>
                  
<mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow></mrow>
               
</math>
λx.sin(x+1)
Rewrite: lambda
                  
<lambda>
  <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
  <ci>expression-in-x1-xn</ci>
</lambda>
               
<math>
                  
<mrow><mo>λ</mo><mi>x1</mi><mi>xn</mi><mo>.</mo><mi>expression-in-x1-xn</mi></mrow>
               
</math>
λx1xn.expression-in-x1-xn
                  
<bind><csymbol cd="fns1">lambda</csymbol>
  <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
  <ci>expression-in-x1-xn</ci>
</bind>
               
<math>
                  
<mrow><mo>λ</mo><mi>x1</mi><mi>xn</mi><mo>.</mo><mi>expression-in-x1-xn</mi></mrow>
               
</math>
λx1xn.expression-in-x1-xn
Rewrite: lambda domainofapplication
                  
<lambda>
  <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x1-xn</ci>
</lambda>
               
<math>
                  
<mrow><mo>λ</mo><mi>x1</mi><mi>xn</mi><mo>∈</mo><mi>D</mi><mo>.</mo><mi>expression-in-x1-xn</mi></mrow>
               
</math>
λx1xnD.expression-in-x1-xn
                  
<apply><csymbol cd="fns1">restriction</csymbol>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
    <ci>expression-in-x1-xn</ci>
  </bind>
  <ci>D</ci>
</apply>
               
<math>
                  
<mrow><mi>restriction</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mo>λ</mo><mi>x1</mi><mi>xn</mi><mo>.</mo><mi>expression-in-x1-xn</mi></mrow><mo>,</mo><mi>D</mi><mo>)</mo></mrow></mrow>
               
</math>
restriction(λx1xn.expression-in-x1-xn,D)
Function composition <compose/>
                  
<apply><compose/><ci>f</ci><ci>g</ci><ci>h</ci></apply>
               
<math>
                  
<mrow><mi>f</mi><mo>∘</mo><mi>g</mi><mo>∘</mo><mi>h</mi></mrow>
               
</math>
fgh
                  
<apply><eq/>
  <apply>
    <apply><compose/><ci>f</ci><ci>g</ci></apply>
    <ci>x</ci>
  </apply>
  <apply><ci>f</ci><apply><ci>g</ci><ci>x</ci></apply></apply>
</apply>
               
<math>
                  
<mrow><mrow><mrow><mi>f</mi><mo>∘</mo><mi>g</mi></mrow><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>=</mo><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>g</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow>
               
</math>
fg(x)=f(g(x))
Identity function <ident/>
                  
<apply><eq/>
  <apply><compose/>
    <ci type="function">f</ci>
    <apply><inverse/>
      <ci type="function">f</ci>
    </apply>
  </apply>
  <ident/>
</apply>
               
<math>
                  
<mrow><mrow><mi>f</mi><mo>∘</mo><msup><mi>f</mi><mfenced><mn>-1</mn></mfenced></msup></mrow><mo>=</mo><mi>id</mi></mrow>
               
</math>
ff-1=id
Domain <domain/>
                  
<apply><eq/>
  <apply><domain/><ci>f</ci></apply>
  <reals/>
</apply>
               
<math>
                  
<mrow><mrow><mi>domain</mi><mo>⁡</mo><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></mrow><mo>=</mo><mi>ℝ</mi></mrow>
               
</math>
domain(f)=
codomain <codomain/>
                  
<apply><eq/>
  <apply><codomain/><ci>f</ci></apply>
  <rationals/>
</apply>
               
<math>
                  
<mrow><mrow><mi>codomain</mi><mo>⁡</mo><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></mrow><mo>=</mo><mi>ℚ</mi></mrow>
               
</math>
codomain(f)=
Image <image/>
                  
<apply><eq/>
  <apply><image/><sin/></apply>
  <interval><cn>-1</cn><cn> 1</cn></interval>
</apply>
               
<math>
                  
<mrow><mrow><mi>image</mi><mo>⁡</mo><mrow><mo>(</mo><mi>sin</mi><mo>)</mo></mrow></mrow><mo>=</mo><mo>[</mo><mrow><mn>-1</mn><mo>,</mo><mn> 1</mn></mrow><mo>]</mo></mrow>
               
</math>
image(sin)=[-1, 1]
Piecewise declaration <piecewise>, <piece>, <otherwise>
                  
<piecewise>
  <piece>
    <apply><minus/><ci>x</ci></apply>
    <apply><lt/><ci>x</ci><cn>0</cn></apply>
  </piece>
  <piece>
    <cn>0</cn>
    <apply><eq/><ci>x</ci><cn>0</cn></apply>
  </piece>
  <piece>
    <ci>x</ci>
    <apply><gt/><ci>x</ci><cn>0</cn></apply>
  </piece>
</piecewise>
               
<math>
                  
<mrow><mo>{</mo><mtable><mtr><mtd><mrow><mo>-</mo><mi>x</mi></mrow></mtd><mtd><mtext>&nbsp;if&nbsp;</mtext></mtd><mtd><mrow><mi>x</mi><mo>&gt;</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mtext>&nbsp;if&nbsp;</mtext></mtd><mtd><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mi>x</mi></mtd><mtd><mtext>&nbsp;if&nbsp;</mtext></mtd><mtd><mrow><mi>x</mi><mo>&lt;</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow>
               
</math>
{-x if x>00 if x=0x if x<0
                  
<piecewise>
  <piece>
    <cn>0</cn>
    <apply><lt/><ci>x</ci><cn>0</cn></apply>
  </piece>
  <piece>
    <cn>1</cn>
    <apply><gt/><ci>x</ci><cn>1</cn></apply>
  </piece>
  <otherwise>
    <ci>x</ci>
  </otherwise>
</piecewise>
               
<math>
                  
<mrow><mo>{</mo><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mtext>&nbsp;if&nbsp;</mtext></mtd><mtd><mrow><mi>x</mi><mo>&gt;</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mtext>&nbsp;if&nbsp;</mtext></mtd><mtd><mrow><mi>x</mi><mo>&lt;</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mi>x</mi></mtd><mtd columnspan="2"><mtext>&nbsp;otherwise</mtext></mtd></mtr></mtable></mrow>
               
</math>
{0 if x>01 if x<1x otherwise
                  
<apply><csymbol cd="piece1">piecewise</csymbol>
  <apply><csymbol cd="piece1">piece</csymbol>
    <cn>0</cn>
    <apply><csymbol cd="relation1">lt</csymbol><ci>x</ci><cn>0</cn></apply>  
  </apply>   
  <apply><csymbol cd="piece1">piece</csymbol>
    <cn>1</cn>
    <apply><csymbol cd="relation1">gt</csymbol><ci>x</ci><cn>1</cn></apply>  
  </apply>   
  <apply><csymbol cd="piece1">otherwise</csymbol>
    <ci>x</ci>
  </apply>   
</apply>
               
<math>
                  
<mrow><mi>piecewise</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>piece</mi><mo>⁡</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mrow><mi>x</mi><mo>&gt;</mo><mn>0</mn></mrow><mo>)</mo></mrow></mrow><mo>,</mo><mrow><mi>piece</mi><mo>⁡</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mrow><mi>x</mi><mo>&lt;</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mo>,</mo><mrow><mi>otherwise</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow>
               
</math>
piecewise(piece(0,x>0),piece(1,x<1),otherwise(x))

Arithmetic, Algebra and Logic

Quotient <quotient/>
                  
<apply><quotient/><ci>a</ci><ci>b</ci></apply>
               
<math>
                  
<mrow><mo>⌊</mo><mi>a</mi><mo>/</mo><mi>b</mi><mo>⌋</mo></mrow>
               
</math>
a/b
Factorial <factorial/>
                  
<apply><factorial/><ci>n</ci></apply>
               
<math>
                  
<mrow><mi>n</mi><mo>!</mo></mrow>
               
</math>
n!
Division <divide/>
                  
<apply><divide/>
  <ci>a</ci>
  <ci>b</ci>
</apply>
               
<math>
                  
<mrow><mi>a</mi><mo>/</mo><mi>b</mi></mrow>
               
</math>
a/b
Maximum <max/>
                  
<apply><max/><cn>2</cn><cn>3</cn><cn>5</cn></apply>
               
<math>
                  
<mrow><mi>max</mi><mo>⁡</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>)</mo></mrow></mrow>
               
</math>
max(2,3,5)
                  
<apply><max/>
  <bvar><ci>y</ci></bvar>
  <condition>
    <apply><in/>
      <ci>y</ci>
      <interval><cn>0</cn><cn>1</cn></interval>
    </apply>
  </condition>
  <apply><power/><ci>y</ci><cn>3</cn></apply>
</apply>
               
<math>
                  
<mrow><mi>max</mi><mo>⁡</mo><mrow><mo>(</mo><msup><mi>y</mi><mn>3</mn></msup><mo>)</mo></mrow></mrow>
               
</math>
max(y3)
Minimum <min/>
                  
<apply><min/><ci>a</ci><ci>b</ci></apply>
               
<math>
                  
<mrow><mi>min</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow>
               
</math>
min(a,b)
                  
<apply><min/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><notin/><ci>x</ci><ci type="set">B</ci></apply>
  </condition>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
<math>
                  
<mrow><mi>min</mi><mo>⁡</mo><mrow><mo>(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>)</mo></mrow></mrow>
               
</math>
min(x2)
Subtraction <minus/>
                  
<apply><minus/><cn>3</cn></apply>
               
<math>
                  
<mrow><mo>-</mo><mn>3</mn></mrow>
               
</math>
-3
                  
<apply><minus/><ci>x</ci><ci>y</ci></apply>
               
<math>
                  
<mrow><mi>x</mi><mo>-</mo><mi>y</mi></mrow>
               
</math>
x-y
Addition <plus/>
                  
<apply><plus/><ci>x</ci><ci>y</ci><ci>z</ci></apply>
               
<math>
                  
<mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi></mrow>
               
</math>
x+y+z
Exponentiation <power/>
                  
<apply><power/><ci>x</ci><cn>3</cn></apply>
               
<math>
                  
<msup><mi>x</mi><mn>3</mn></msup>
               
</math>
x3
Remainder <rem/>
                  
<apply><rem/><ci> a </ci><ci> b </ci></apply>
               
<math>
                  
<mrow><mi> a </mi><mo>mod</mo><mi> b </mi></mrow>
               
</math>
a mod b
Multiplication <times/>
                  
<apply><times/><ci>a</ci><ci>b</ci></apply>
               
<math>
                  
<mrow><mi>a</mi><mo>⁢</mo><mi>b</mi></mrow>
               
</math>
ab
Root <root/>
                  
<apply><root/>
  <degree><ci type="integer">n</ci></degree>
  <ci>a</ci>
</apply>
               
<math>
                  
<mroot><mi>a</mi><mi>n</mi></mroot>
               
</math>
an
                  <apply><root/><ci>x</ci></apply>
               
<math>
                  <msqrt><mi>x</mi></msqrt>
               
</math>
x
                  
<apply><csymbol cd="arith1">root</csymbol>
  <ci>x</ci>
  <cn type="integer">2</cn>
</apply>
               
<math>
                  
<mroot><mi>x</mi><mrow></mrow></mroot>
               
</math>
x
                  
<apply><root/>
  <degree><ci type="integer">n</ci></degree>
  <ci>a</ci>
</apply>
               
<math>
                  
<mroot><mi>a</mi><mi>n</mi></mroot>
               
</math>
an
                  
<apply><csymbol cd="arith1">root</csymbol>
  <ci>a</ci>
  <cn type="integer">n</cn>
</apply>
               
<math>
                  
<mroot><mi>a</mi><mrow></mrow></mroot>
               
</math>
a
Greatest common divisor <gcd/>
                  
<apply><gcd/><ci>a</ci><ci>b</ci><ci>c</ci></apply>
               
<math>
                  
<mrow><mi>gcd</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></mrow>
               
</math>
gcd(a,b,c)
And <and/>
                  
<apply><and/><ci>a</ci><ci>b</ci></apply>
               
<math>
                  
<mrow><mi>a</mi><mo>∧</mo><mi>b</mi></mrow>
               
</math>
ab
                  
<apply><and/>
  <bvar><ci>i</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><ci>n</ci></uplimit>
  <apply><gt/><apply><selector/><ci>a</ci><ci>i</ci></apply><cn>0</cn></apply>
</apply>
               
<math>
                  
<mrow><mrow><mo>(</mo><msub><mi>a</mi><mrow><mi>i</mi></mrow></msub><mo>&lt;</mo><mn>0</mn><mo>)</mo></mrow></mrow>
               
</math>
(ai<0)
                  
<apply><csymbol cd="fns2">apply_to_list</csymbol>
  <csymbol cd="logic1">and</csymbol>
  <apply><csymbol cd="list1">map</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>i</ci></bvar>
      <apply><csymbol cd="relation1">gt</csymbol>
        <apply><csymbol cd="linalg1">vector_selector</csymbol>
          <ci>i</ci>
          <ci>a</ci>
        </apply>
        <cn>0</cn>
      </apply>
    </bind>
    <apply><csymbol cd="interval1">integer_interval</csymbol>
      <cn type="integer">0</cn>
      <ci>n</ci>
    </apply>
  </apply>
</apply>
               
<math>
                  
<mrow><mi>apply_to_list</mi><mo>⁡</mo><mrow><mo>(</mo><mi>and</mi><mo>,</mo><mrow><mi>map</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mo>λ</mo><mi>i</mi><mo>.</mo><mrow><mrow><mi>vector_selector</mi><mo>⁡</mo><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>a</mi><mo>)</mo></mrow></mrow><mo>&lt;</mo><mn>0</mn></mrow></mrow><mo>,</mo><mrow><mi>integer_interval</mi><mo>⁡</mo><mrow><mo>(</mo><mrow></mrow><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow>
               
</math>
apply_to_list(and,map(λi.vector_selector(i,a)<0,integer_interval(,n)))
Or <or/>
                  
<apply><or/><ci>a</ci><ci>b</ci></apply>
               
<math>
                  
<mrow><mi>a</mi><mo>∨</mo><mi>b</mi></mrow>
               
</math>
ab
Exclusive Or <xor/>
                  
<apply><xor/><ci>a</ci><ci>b</ci></apply>
               
<math>
                  
<mrow><mi>a</mi><mo>xor</mo><mi>b</mi></mrow>
               
</math>
axorb
Not <not/>
                  
<apply><not/><ci>a</ci></apply>
               
<math>
                  
<mrow><mi>not</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow>
               
</math>
not(a)
Implies <implies/>
                  
<apply><implies/><ci>A</ci><ci>B</ci></apply>
               
<math>
                  
<mrow><mi>A</mi><mo>⇒</mo><mi>B</mi></mrow>
               
</math>
AB
Universal quantifier <forall/>
                  
<bind><forall/>
  <bvar><ci>x</ci></bvar>
  <apply><eq/>
    <apply><minus/><ci>x</ci><ci>x</ci></apply>
    <cn>0</cn>
  </apply>
</bind>
               
<math>
                  
<mrow><mo>∀</mo><mi>x</mi><mo>.</mo><mrow><mrow><mi>x</mi><mo>-</mo><mi>x</mi></mrow><mo>=</mo><mn>0</mn></mrow></mrow>
               
</math>
x.x-x=0
                     
<bind><forall/>
  <bvar><ci>p</ci></bvar>
  <bvar><ci>q</ci></bvar>
  <condition>
    <apply><and/>
      <apply><in/><ci>p</ci><rationals/></apply>
      <apply><in/><ci>q</ci><rationals/></apply>
      <apply><lt/><ci>p</ci><ci>q</ci></apply>
    </apply>
  </condition>
  <apply><lt/>
    <ci>p</ci>
    <apply><power/><ci>q</ci><cn>2</cn></apply>
  </apply>
</bind>
                  
<math>
                     
<mrow><mo>∀</mo><mrow><mrow><mi>p</mi><mo>∈</mo><mi>ℚ</mi></mrow><mo>∧</mo><mrow><mi>q</mi><mo>∈</mo><mi>ℚ</mi></mrow><mo>∧</mo><mrow><mo>(</mo><mi>p</mi><mo>&gt;</mo><mi>q</mi><mo>)</mo></mrow></mrow><mo>.</mo><mrow><mi>p</mi><mo>&gt;</mo><msup><mi>q</mi><mn>2</mn></msup></mrow></mrow>
                  
</math>
pq(p>q).p>q2
                     
<bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>p</ci></bvar>
  <bvar><ci>q</ci></bvar>
  <apply><csymbol cd="logic1">implies</csymbol>
    <apply><csymbol cd="logic1">and</csymbol>
      <apply><csymbol cd="set1">in</csymbol>
        <ci>p</ci>
        <csymbol cd="setname1">Q</csymbol>
        </apply>
      <apply><csymbol cd="set1">in</csymbol>
        <ci>q</ci>
        <csymbol cd="setname1">Q</csymbol>
      </apply>
      <apply><csymbol cd="relation1">lt</csymbol><ci>p</ci><ci>q</ci></apply>
    </apply>
    <apply><csymbol cd="relation1">lt</csymbol>
      <ci>p</ci>
      <apply><csymbol cd="arith1">power</csymbol>
        <ci>q</ci>
        <cn>2</cn>
      </apply>
    </apply>
  </apply>
</bind>
                  
<math>
                     
<mrow><mo>∀</mo><mi>p</mi><mi>q</mi><mo>.</mo><mrow><mrow><mrow><mi>p</mi><mo>∈</mo><mi>Q</mi></mrow><mo>∧</mo><mrow><mi>q</mi><mo>∈</mo><mi>Q</mi></mrow><mo>∧</mo><mrow><mo>(</mo><mi>p</mi><mo>&gt;</mo><mi>q</mi><mo>)</mo></mrow></mrow><mo>⇒</mo><mrow><mi>p</mi><mo>&gt;</mo><msup><mi>q</mi><mn>2</mn></msup></mrow></mrow></mrow>
                  
</math>
pq.pQqQ(p>q)p>q2
Existential quantifier <exists/>
                  
<bind><exists/>
  <bvar><ci>x</ci></bvar>
  <apply><eq/>
    <apply><ci>f</ci><ci>x</ci></apply>
    <cn>0</cn>
  </apply>
</bind>
               
<math>
                  
<mrow><mo>∃</mo><mi>x</mi><mo>.</mo><mrow><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>=</mo><mn>0</mn></mrow></mrow>
               
</math>
x.f(x)=0
                  
<apply><exists/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication>
    <integers/>
  </domainofapplication>
   <apply><eq/>
    <apply><ci>f</ci><ci>x</ci></apply>
    <cn>0</cn>
  </apply>
</apply>
               
<math>
                  
<mrow><mo>∃</mo><mi>x</mi><mo>∈</mo><mi>ℤ</mi><mo>.</mo><mrow><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>=</mo><mn>0</mn></mrow></mrow>
               
</math>
x.f(x)=0
                  
<bind><csymbol cd="quant1">exists</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="logic1">and</csymbol>
    <apply><csymbol cd="set1">in</csymbol>
      <ci>x</ci>
      <csymbol cd="setname1">Z</csymbol>
    </apply>
    <apply><csymbol cd="relation1">eq</csymbol>
      <apply><ci>f</ci><ci>x</ci></apply>
      <cn>0</cn>
    </apply>
  </apply>
</bind>
               
<math>
                  
<mrow><mo>∃</mo><mi>x</mi><mo>.</mo><mrow><mrow><mi>x</mi><mo>∈</mo><mi>Z</mi></mrow><mo>∧</mo><mrow><mo>(</mo><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>=</mo><mn>0</mn><mo>)</mo></mrow></mrow></mrow>
               
</math>
x.xZ(f(x)=0)
Absolute Value <abs/>
                  
<apply><abs/><ci>x</ci></apply>
               
<math>
                  
<mrow><mi>abs</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow>
               
</math>
abs(x)
Complex conjugate <conjugate/>
                  
<apply><conjugate/>
  <apply><plus/>
    <ci>x</ci>
    <apply><times/><cn>&#x2148;</cn><ci>y</ci></apply>
  </apply>
</apply>
               
<math>
                  
<mrow><mi>conjugate</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mrow><mn>ⅈ</mn><mo>⁢</mo><mi>y</mi></mrow></mrow><mo>)</mo></mrow></mrow>
               
</math>
conjugate(x+y)
Argument <arg/>
                  
<apply><arg/>
  <apply><plus/>
    <ci> x </ci>
    <apply><times/><imaginaryi/><ci>y</ci></apply>
  </apply>
</apply>
               
<math>
                  
<mrow><mi>arg</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi> x </mi><mo>+</mo><mrow><mi>i</mi><mo>⁢</mo><mi>y</mi></mrow></mrow><mo>)</mo></mrow></mrow>
               
</math>
arg( x +iy)
Real part <real/>
                  
<apply><real/>
  <apply><plus/>
    <ci>x</ci>
    <apply><times/><imaginaryi/><ci>y</ci></apply>
  </apply>
</apply>
               
<math>
                  
<mrow><mi>real</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mrow><mi>i</mi><mo>⁢</mo><mi>y</mi></mrow></mrow><mo>)</mo></mrow></mrow>
               
</math>
real(x+iy)
Imaginary part <imaginary/>
                  
<apply><imaginary/>
  <apply><plus/>
    <ci>x</ci>
    <apply><times/><imaginaryi/><ci>y</ci></apply>
  </apply>
</apply>
               
<math>
                  
<mrow><mi>imaginary</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mrow><mi>i</mi><mo>⁢</mo><mi>y</mi></mrow></mrow><mo>)</mo></mrow></mrow>
               
</math>
imaginary(x+iy)
Lowest common multiple <lcm/>
                  
<apply><lcm/><ci>a</ci><ci>b</ci><ci>c</ci></apply>
               
<math>
                  
<mrow><mi>lcm</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></mrow>
               
</math>
lcm(a,b,c)
Floor <floor/>
                  
<apply><floor/><ci>a</ci></apply>
               
<math>
                  
<mrow><mi>floor</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow>
               
</math>
floor(a)
Ceiling <ceiling/>
                  
<apply><ceiling/><ci>a</ci></apply>
               
<math>
                  
<mrow><mi>ceiling</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow>
               
</math>
ceiling(a)

Relations

Equals <eq/>
                  
<apply><eq/>
  <cn type="rational">2<sep/>4</cn>
  <cn type="rational">1<sep/>2</cn>
</apply>
               
<math>
                  
<mrow><mfrac><mrow><cn>2</cn><mn>2</mn></mrow><mrow><cn>4</cn><mn>4</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><cn>1</cn><mn>1</mn></mrow><mrow><cn>2</cn><mn>2</mn></mrow></mfrac></mrow>
               
</math>
2244=1122
Not Equals <neq/>
                  
<apply><neq/><cn>3</cn><cn>4</cn></apply>
               
<math>
                  
<mrow><mn>3</mn><mo>≠</mo><mn>4</mn></mrow>
               
</math>
34
Greater than <gt/>
                  
<apply><gt/><cn>3</cn><cn>2</cn></apply>
               
<math>
                  
<mrow><mn>3</mn><mo>&lt;</mo><mn>2</mn></mrow>
               
</math>
3<2
Less Than <lt/>
                  
<apply><lt/><cn>2</cn><cn>3</cn><cn>4</cn></apply>
               
<math>
                  
<mrow><mn>2</mn><mo>&gt;</mo><mn>3</mn><mo>&gt;</mo><mn>4</mn></mrow>
               
</math>
2>3>4
Greater Than or Equal <geq/>
                  
<apply><geq/><cn>4</cn><cn>3</cn><cn>3</cn></apply>
               
<math>
                  
<mrow><mn>4</mn><mo>≥</mo><mn>3</mn><mo>≥</mo><mn>3</mn></mrow>
               
</math>
433
                  
<apply><csymbol cd="fns2">predicate_on_list</csymbol>
 <csymbol cd="reln1">geq</csymbol>
 <apply><csymbol cd="list1">list</csymbol>
  <cn>4</cn><cn>3</cn><cn>3</cn>
 </apply>
</apply>
               
<math>
                  
<mrow><mi>predicate_on_list</mi><mo>⁡</mo><mrow><mo>(</mo><mi>geq</mi><mo>,</mo><mo>(</mo><mrow><mn>4</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>3</mn></mrow><mo>)</mo><mo>)</mo></mrow></mrow>
               
</math>
predicate_on_list(geq,(4,3,3))
Less Than or Equal <leq/>
                  
<apply><leq/><cn>3</cn><cn>3</cn><cn>4</cn></apply>
               
<math>
                  
<mrow><mn>3</mn><mo>≤</mo><mn>3</mn><mo>≤</mo><mn>4</mn></mrow>
               
</math>
334
Equivalent <equivalent/>
                  
<apply><equivalent/>
  <ci>a</ci>
  <apply><not/><apply><not/><ci>a</ci></apply></apply>
</apply>
               
<math>
                  
<mrow><mi>a</mi><mo>≡</mo><mrow><mi>not</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>not</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mrow>
               
</math>
anot(not(a))
Approximately <approx/>
                  
<apply><approx/>
  <pi/>
  <cn type="rational">22<sep/>7</cn>
</apply>
               
<math>
                  
<mrow><mi>π</mi><mo>≃</mo><mfrac><mrow><cn>22</cn><mn>22</mn></mrow><mrow><cn>7</cn><mn>7</mn></mrow></mfrac></mrow>
               
</math>
π222277
Factor Of <factorof/>
                  
<apply><factorof/><ci>a</ci><ci>b</ci></apply>
               
<math>
                  
<mrow><mi>a</mi><mo>⇒</mo><mi>b</mi></mrow>
               
</math>
ab

Calculus and Vector Calculus

Integral <int/>
                  
<apply><eq/>
  <apply><int/><sin/></apply>
  <cos/>
</apply>
               
<math>
                  
<mrow><mrow><msubsup><mo>∫</mo><mrow></mrow><mrow></mrow></msubsup><mi>sin</mi></mrow><mo>=</mo><mi>cos</mi></mrow>
               
</math>
sin=cos
                  
<apply><int/>
  <interval><ci>a</ci><ci>b</ci></interval>
  <cos/>
</apply>
               
<math>
                  
<mrow><msubsup><mo>∫</mo><mrow><mi>a</mi></mrow><mrow><mi>b</mi></mrow></msubsup><mi>cos</mi></mrow>
               
</math>
abcos
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>1</cn></uplimit>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
<math>
                  
<mrow><msubsup><mo>∫</mo><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><msup><mi>x</mi><mn>2</mn></msup><mrow><mi>d</mi><mi>x</mi></mrow></mrow>
               
</math>
01x2dx
Rewrite: int
                     
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <ci>expression-in-x</ci>
</apply>
                  
<math>
                     
<mrow><msubsup><mo>∫</mo><mrow></mrow><mrow></mrow></msubsup><mi>expression-in-x</mi><mrow><mi>d</mi><mi>x</mi></mrow></mrow>
                  
</math>
expression-in-xdx
                     
<apply>
  <apply><csymbol cd="calculus1">int</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>expression-in-x</ci>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
                  
<math>
                     
<mrow><mrow><msubsup><mo>∫</mo><mrow></mrow><mrow></mrow></msubsup><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mi>expression-in-x</mi></mrow></mrow><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow>
                  
</math>
λx.expression-in-x(x)
                     
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <apply><cos/><ci>x</ci></apply>
</apply>
                  
<math>
                     
<mrow><msubsup><mo>∫</mo><mrow></mrow><mrow></mrow></msubsup><mrow><mi>cos</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mrow>
                  
</math>
cos(x)dx
                     
<apply>
  <apply><csymbol cd="calculus1">int</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <apply><cos/><ci>x</ci></apply>
    </bind>
  </apply>
  <ci>x</ci>
</apply>

                  
<math>
                     
<mrow><mrow><msubsup><mo>∫</mo><mrow></mrow><mrow></mrow></msubsup><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mrow><mi>cos</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mrow></mrow><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow>

                  
</math>
λx.cos(x)(x)
                     
<apply><int/>
  <domainofapplication><ci>C</ci></domainofapplication>
  <ci>f</ci>
</apply>
                  
<math>
                     
<mrow><msubsup><mo>∫</mo><mrow><mi>C</mi></mrow><mrow></mrow></msubsup><mi>f</mi></mrow>
                  
</math>
Cf
                     
<apply><csymbol cd="calculus1">defint</csymbol><ci>C</ci><ci>f</ci></apply>
                  
<math>
                     
<mrow><mi>defint</mi><mo>⁡</mo><mrow><mo>(</mo><mi>C</mi><mo>,</mo><mi>f</mi><mo>)</mo></mrow></mrow>
                  
</math>
defint(C,f)
Rewrite: defint
                     
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
                  
<math>
                     
<mrow><msubsup><mo>∫</mo><mrow><mi>D</mi></mrow><mrow></mrow></msubsup><mi>expression-in-x</mi><mrow><mi>d</mi><mi>x</mi></mrow></mrow>
                  
</math>
Dexpression-in-xdx
                     
<apply><csymbol cd="calculus1">defint</csymbol>
  <ci>D</ci>  
  <bind><csymbol cd="fns1">lambda</csymbol>
  <bvar><ci>x</ci></bvar>
  <ci>expression-in-x</ci>
  </bind>
</apply>
                  
<math>
                     
<mrow><mi>defint</mi><mo>⁡</mo><mrow><mo>(</mo><mi>D</mi><mo>,</mo><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mi>expression-in-x</mi></mrow><mo>)</mo></mrow></mrow>
                  
</math>
defint(D,λx.expression-in-x)
Rewrite: defint limits
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><ci>a</ci></lowlimit>
  <uplimit><ci>b</ci></uplimit>
  <ci>expression-in-x</ci>
</apply>
               
<math>
                  
<mrow><msubsup><mo>∫</mo><mrow><mi>a</mi></mrow><mrow><mi>b</mi></mrow></msubsup><mi>expression-in-x</mi><mrow><mi>d</mi><mi>x</mi></mrow></mrow>
               
</math>
abexpression-in-xdx
                  
<apply><csymbol cd="calculus1">defint</csymbol>
  <apply><csymbol cd="interval1">oriented_interval</csymbol>
    <ci>a</ci> <ci>b</ci>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
  <bvar><ci>x</ci></bvar>
  <ci>expression-in-x</ci>
  </bind>
</apply>
               
<math>
                  
<mrow><mi>defint</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>oriented_interval</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow><mo>,</mo><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mi>expression-in-x</mi></mrow><mo>)</mo></mrow></mrow>
               
</math>
defint(oriented_interval(a,b),λx.expression-in-x)
                  
<bind><int/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <condition>
    <apply><and/>
      <apply><leq/><cn>0</cn><ci>x</ci></apply>
      <apply><leq/><ci>x</ci><cn>1</cn></apply>
      <apply><leq/><cn>0</cn><ci>y</ci></apply>
      <apply><leq/><ci>y</ci><cn>1</cn></apply>
    </apply>
  </condition>
  <apply><times/>
    <apply><power/><ci>x</ci><cn>2</cn></apply>
    <apply><power/><ci>y</ci><cn>3</cn></apply>
  </apply>
</bind>
               
<math>
                  
<mrow><msubsup><mo>∫</mo><mrow><mrow><mrow><mo>(</mo><mn>0</mn><mo>≤</mo><mi>x</mi><mo>)</mo></mrow><mo>∧</mo><mrow><mo>(</mo><mi>x</mi><mo>≤</mo><mn>1</mn><mo>)</mo></mrow><mo>∧</mo><mrow><mo>(</mo><mn>0</mn><mo>≤</mo><mi>y</mi><mo>)</mo></mrow><mo>∧</mo><mrow><mo>(</mo><mi>y</mi><mo>≤</mo><mn>1</mn><mo>)</mo></mrow></mrow></mrow><mrow></mrow></msubsup><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>⁢</mo><msup><mi>y</mi><mn>3</mn></msup></mrow><mrow><mi>d</mi><mi>x</mi></mrow><mrow><mi>d</mi><mi>y</mi></mrow></mrow>
               
</math>
(0x)(x1)(0y)(y1)x2y3dxdy
                  
<apply><csymbol cd="calculus1">defint</csymbol>
 <apply><csymbol cd="set1">suchthat</csymbol>
  <apply><csymbol cd="set1">cartesianproduct</csymbol>
   <csymbol cd="setname1">R</csymbol>
   <csymbol cd="setname1">R</csymbol>
  </apply>
  <apply><csymbol cd="logic1">and</csymbol>
   <apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>x</ci></apply>
   <apply><csymbol cd="arith1">leq</csymbol><ci>x</ci><cn>1</cn></apply>
   <apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>y</ci></apply>
   <apply><csymbol cd="arith1">leq</csymbol><ci>y</ci><cn>1</cn></apply>
  </apply>
  <bind><csymbol cd="fns11">lambda</csymbol>
   <bvar><ci>x</ci></bvar>
   <bvar><ci>y</ci></bvar>
   <apply><csymbol cd="arith1">times</csymbol>
    <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn>2</cn></apply>
    <apply><csymbol cd="arith1">power</csymbol><ci>y</ci><cn>3</cn></apply>
   </apply>
  </bind>
 </apply>
</apply>
               
<math>
                  
<mrow><mi>defint</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>suchthat</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>R</mi><mo>×</mo><mi>R</mi></mrow><mo>,</mo><mrow><mrow><mo>(</mo><mn>0</mn><mo>≤</mo><mi>x</mi><mo>)</mo></mrow><mo>∧</mo><mrow><mo>(</mo><mi>x</mi><mo>≤</mo><mn>1</mn><mo>)</mo></mrow><mo>∧</mo><mrow><mo>(</mo><mn>0</mn><mo>≤</mo><mi>y</mi><mo>)</mo></mrow><mo>∧</mo><mrow><mo>(</mo><mi>y</mi><mo>≤</mo><mn>1</mn><mo>)</mo></mrow></mrow><mo>,</mo><mrow><mo>λ</mo><mi>x</mi><mi>y</mi><mo>.</mo><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>⁢</mo><msup><mi>y</mi><mn>3</mn></msup></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow>
               
</math>
defint(suchthat(R×R,(0x)(x1)(0y)(y1),λxy.x2y3))
Differentiation <diff/>
                  <apply><diff/><ci>f</ci></apply>
               
<math>
                  <msup><mrow><mi>f</mi></mrow><mo>′</mo></msup>
               
</math>
f
                  
<apply><eq/>
  <apply><diff/>
    <bvar><ci>x</ci></bvar>
    <apply><sin/><ci>x</ci></apply>
  </apply>
  <apply><cos/><ci>x</ci></apply>
</apply>
               
<math>
                  
<mrow><mfrac><mrow><mi>d</mi><mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>=</mo><mrow><mi>cos</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mrow>
               
</math>
dsin(x)dx=cos(x)
                  
<apply><diff/>
  <bvar><ci>x</ci><degree><cn>2</cn></degree></bvar>
  <apply><power/><ci>x</ci><cn>4</cn></apply>
</apply>
               
<math>
                  
<mfrac><mrow><msup><mi>d</mi><mn>2</mn></msup><msup><mi>x</mi><mn>4</mn></msup></mrow><mrow><mi>d</mi><msup><ci>x</ci><mn>2</mn></msup></mrow></mfrac>
               
</math>
d2x4dx2
Rewrite: diff
                     
<apply><diff/>
  <bvar><ci>x</ci></bvar>
  <ci>expression-in-x</ci>
</apply>
                  
<math>
                     
<mfrac><mrow><mi>d</mi><mi>expression-in-x</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac>
                  
</math>
dexpression-in-xdx
                     
<apply>
  <apply><csymbol cd="calculus1">diff</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>E</ci>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
                  
<math>
                     
<mrow><msup><mrow><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mi>E</mi></mrow></mrow><mo>′</mo></msup><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow>
                  
</math>
λx.E(x)
                     
<apply><diff/>
  <bvar><ci>x</ci></bvar>
  <apply><sin/><ci>x</ci></apply>
</apply>
                  
<math>
                     
<mfrac><mrow><mi>d</mi><mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac>
                  
</math>
dsin(x)dx
                     
<apply>
  <apply><csymbol cd="calculus1">diff</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
                  
<math>
                     
<mrow><msup><mrow><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mrow></mrow><mo>′</mo></msup><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow>
                  
</math>
λx.sin(x)(x)
Rewrite: nthdiff
                  
<apply><diff/>
  <bvar><ci>x</ci><degree><ci>n</ci></degree></bvar>
  <ci>expression-in-x</ci>
</apply>
               
<math>
                  
<mfrac><mrow><msup><mi>d</mi><mi>n</mi></msup><mi>expression-in-x</mi></mrow><mrow><mi>d</mi><msup><ci>x</ci><mi>n</mi></msup></mrow></mfrac>
               
</math>
dnexpression-in-xdxn
                  
<apply>
  <apply><csymbol cd="calculus1">nthdiff</csymbol>
    <ci>n</ci>
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>expression-in-x</ci>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
               
<math>
                  
<mrow><mrow><mi>nthdiff</mi><mo>⁡</mo><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mi>expression-in-x</mi></mrow><mo>)</mo></mrow></mrow><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow>
               
</math>
nthdiff(n,λx.expression-in-x)(x)
                  
<apply><diff/>
  <bvar><degree><cn>2</cn></degree><ci>x</ci></bvar>
  <apply><sin/><ci>x</ci></apply>
</apply>
               
<math>
                  
<mfrac><mrow><msup><mi>d</mi><mn>2</mn></msup><mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mrow><mrow><mi>d</mi><msup><ci>x</ci><mn>2</mn></msup></mrow></mfrac>
               
</math>
d2sin(x)dx2
                  
<apply>
  <apply><csymbol cd="calculus1">nthdiff</csymbol>
    <cn>2</cn>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
               
<math>
                  
<mrow><mrow><mi>nthdiff</mi><mo>⁡</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mrow><mo>)</mo></mrow></mrow><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow>
               
</math>
nthdiff(2,λx.sin(x))(x)
Partial Differentiation <partialdiff/>
                  
<apply><partialdiff/>
  <list><cn>1</cn><cn>1</cn><cn>3</cn></list>
  <ci type="function">f</ci>
</apply>
               
<math>
                  
<mrow><msub><mi>D</mi><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mi>f</mi></mrow>
               
</math>
D1,1,3f
                  
<apply><partialdiff/>
  <list><cn>1</cn><cn>1</cn><cn>3</cn></list>
  <lambda>
   <bvar><ci>x</ci></bvar>
   <bvar><ci>y</ci></bvar>
   <bvar><ci>z</ci></bvar>
   <apply><ci>f</ci><ci>x</ci><ci>y</ci><ci>z</ci></apply>
  </lambda>
</apply>
               
<math>
                  
<mfrac><mrow><msup><mo>∂</mo><mn>3</mn></msup><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow></mrow></mrow><mrow><mo>∂</mo><mi>x</mi><mo>∂</mo><mi>x</mi><mo>∂</mo><mi>z</mi></mrow></mfrac>
               
</math>
3f(x,y,z)xxz
                  
<apply><partialdiff/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply>
</apply>
               
<math>
                  
<mfrac><mrow><msup><mo>∂</mo><mrow><mn>2</mn></mrow></msup><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></mrow><mrow><mo>∂</mo><mi>x</mi><mo>∂</mo><mi>y</mi></mrow></mfrac>
               
</math>
2f(x,y)xy
                  
<apply><partialdiff/>
  <bvar><ci>x</ci><degree><ci>m</ci></degree></bvar>
  <bvar><ci>y</ci><degree><ci>n</ci></degree></bvar>
  <degree><ci>k</ci></degree>
  <apply><ci type="function">f</ci>
    <ci>x</ci>
    <ci>y</ci>
  </apply>
</apply>
               
<math>
                  
<mfrac><mrow><msup><mo>∂</mo><mrow><mi>k</mi></mrow></msup><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></mrow><mrow><mo>∂</mo><msup><mi>x</mi><mi>m</mi></msup><mo>∂</mo><msup><mi>y</mi><mi>n</mi></msup></mrow></mfrac>
               
</math>
kf(x,y)xmyn
Rewrite: partialdiffdegree
                     
<apply><partialdiff/>
  <bvar><ci>x1</ci><degree><ci>n1</ci></degree></bvar>
  <bvar><ci>xk</ci><degree><ci>nk</ci></degree></bvar>
  <degree><ci>total-n1-nk</ci></degree>
  <ci>expression-in-x1-xk</ci>
</apply>
                  
<math>
                     
<mfrac><mrow><msup><mo>∂</mo><mrow><mi>total-n1-nk</mi></mrow></msup><mi>expression-in-x1-xk</mi></mrow><mrow><mo>∂</mo><msup><mi>x1</mi><mi>n1</mi></msup><mo>∂</mo><msup><mi>xk</mi><mi>nk</mi></msup></mrow></mfrac>
                  
</math>
total-n1-nkexpression-in-x1-xkx1n1xknk
                  
<apply>
  <apply><csymbol cd="calculus1">partialdiffdegree</csymbol>
    <apply><csymbol cd="list1">list</csymbol>
      <ci>n1</ci> <ci>nk</ci>
    </apply>
    <ci>total-n1-nk</ci>
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x1</ci></bvar>
    <bvar><ci>xk</ci></bvar>
    <ci>expression-in-x1-xk</ci>
   </bind>
  </apply>
  <ci>x1</ci>
  <ci>xk</ci>
</apply>
               
<math>
                  
<mrow><mrow><mi>partialdiffdegree</mi><mo>⁡</mo><mrow><mo>(</mo><mo>(</mo><mrow><mi>n1</mi><mo>,</mo><mi>nk</mi></mrow><mo>)</mo><mo>,</mo><mi>total-n1-nk</mi><mo>,</mo><mrow><mo>λ</mo><mi>x1</mi><mi>xk</mi><mo>.</mo><mi>expression-in-x1-xk</mi></mrow><mo>)</mo></mrow></mrow><mo>⁡</mo><mrow><mo>(</mo><mi>x1</mi><mo>,</mo><mi>xk</mi><mo>)</mo></mrow></mrow>
               
</math>
partialdiffdegree((n1,nk),total-n1-nk,λx1xk.expression-in-x1-xk)(x1,xk)
                     
<apply><csymbol cd="arith1">plus</csymbol>
  <ci>n1</ci> <ci>nk</ci>
</apply>
                  
<math>
                     
<mrow><mi>n1</mi><mo>+</mo><mi>nk</mi></mrow>
                  
</math>
n1+nk
                     
<apply><partialdiff/>
  <bvar><ci>x</ci><degree><ci>n</ci></degree></bvar>
  <bvar><ci>y</ci><degree><ci>m</ci></degree></bvar>
  <apply><sin/>
    <apply><times/><ci>x</ci><ci>y</ci></apply>
  </apply>
</apply>
                  
<math>
                     
<mfrac><mrow><msup><mo>∂</mo><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></msup><mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>⁢</mo><mi>y</mi></mrow><mo>)</mo></mrow></mrow></mrow><mrow><mo>∂</mo><msup><mi>x</mi><mi>n</mi></msup><mo>∂</mo><msup><mi>y</mi><mi>m</mi></msup></mrow></mfrac>
                  
</math>
n+msin(xy)xnym
                     
<apply>
  <apply><csymbol cd="calculus1">partialdiffdegree</csymbol>
    <apply><csymbol cd="list1">list</csymbol>
      <ci>n</ci><ci>m</ci>
    </apply>
    <apply><csymbol cd="arith1">plus</csymbol>
      <ci>n</ci><ci>m</ci>
    </apply>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <bvar><ci>y</ci></bvar>
      <apply><csymbol cd="transc1">sin</csymbol>
        <apply><csymbol cd="arith1">times</csymbol>
          <ci>x</ci><ci>y</ci>
        </apply>
      </apply>
    </bind>
    <ci>x</ci>
    <ci>y</ci>
  </apply>
</apply>
                  
<math>
                     
<mrow><mrow><mi>partialdiffdegree</mi><mo>⁡</mo><mrow><mo>(</mo><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow><mo>)</mo><mo>,</mo><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow><mo>,</mo><mrow><mo>λ</mo><mi>x</mi><mi>y</mi><mo>.</mo><mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>⁢</mo><mi>y</mi></mrow><mo>)</mo></mrow></mrow></mrow><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow><mo>⁡</mo><mrow><mo>(</mo><mo>)</mo></mrow></mrow>
                  
</math>
partialdiffdegree((n,m),n+m,λxy.sin(xy),x,y)()
Divergence <divergence/>
                  
<apply><divergence/><ci>a</ci></apply>
               
<math>
                  
<mrow><mi>divergence</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow>
               
</math>
divergence(a)
                  
<apply><divergence/>
  <ci type="vector">E</ci>
</apply>
               
<math>
                  
<mrow><mi>divergence</mi><mo>⁡</mo><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow>
               
</math>
divergence(E)
                  
<apply><divergence/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <bvar><ci>z</ci></bvar>
  <vector>
    <apply><plus/><ci>x</ci><ci>y</ci></apply>
    <apply><plus/><ci>x</ci><ci>z</ci></apply>
    <apply><plus/><ci>z</ci><ci>y</ci></apply>
  </vector>
</apply>
               
<math>
                  
<mrow><mi>divergence</mi><mo>⁡</mo><mrow><mo>(</mo><vector>
    <mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow>
    <mrow><mi>x</mi><mo>+</mo><mi>z</mi></mrow>
    <mrow><mi>z</mi><mo>+</mo><mi>y</mi></mrow>
  </vector><mo>)</mo></mrow></mrow>
               
</math>
divergence( x+y x+z z+y )
Gradient <grad/>
                  
<apply><grad/><ci type="function">f</ci></apply>
               
<math>
                  
<mrow><mi>grad</mi><mo>⁡</mo><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></mrow>
               
</math>
grad(f)
                  
<apply><grad/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <bvar><ci>z</ci></bvar>
  <apply><times/><ci>x</ci><ci>y</ci><ci>z</ci></apply>
</apply>
               
<math>
                  
<mrow><mi>grad</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>⁢</mo><mi>y</mi><mo>⁢</mo><mi>z</mi></mrow><mo>)</mo></mrow></mrow>
               
</math>
grad(xyz)
Curl <curl/>
                  
<apply><curl/><ci>a</ci></apply>
               
<math>
                  
<mrow><mi>curl</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow>
               
</math>
curl(a)
Laplacian <laplacian/>
                  
<apply><laplacian/><ci type="vector">E</ci></apply>
               
<math>
                  
<mrow><mi>laplacian</mi><mo>⁡</mo><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow>
               
</math>
laplacian(E)
                  
<apply><laplacian/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <bvar><ci>z</ci></bvar>
  <apply><ci>f</ci><ci>x</ci><ci>y</ci></apply>
</apply>
               
<math>
                  
<mrow><mi>laplacian</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow>
               
</math>
laplacian(f(x,y))

Theory of Sets

Set <set>
                  
<set>
  <ci>a</ci><ci>b</ci><ci>c</ci>
</set>
               
<math>
                  
<mo>{</mo><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow><mo>}</mo>
               
</math>
{a,b,c}
                  
<set>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><lt/><ci>x</ci><cn>5</cn></apply>
  </condition>
  <ci>x</ci>
</set>
               
<math>
                  
<mo>{</mo><mrow><mi>x</mi></mrow><mo>|</mo><mrow><mrow><mrow><mi>x</mi><mo>&gt;</mo><mn>5</mn></mrow></mrow></mrow><mo>}</mo>
               
</math>
{x|x>5}
                  
<set>
  <bvar><ci type="set">S</ci></bvar>
  <condition>
    <apply><in/><ci>S</ci><ci type="list">T</ci></apply>
  </condition>
  <ci>S</ci>
</set>
               
<math>
                  
<mo>{</mo><mrow><mi>S</mi></mrow><mo>|</mo><mrow><mrow><mrow><mi>S</mi><mo>∈</mo><mi>T</mi></mrow></mrow></mrow><mo>}</mo>
               
</math>
{S|ST}
                  
<set>
  <bvar><ci> x </ci></bvar>
  <condition>
    <apply><and/>
      <apply><lt/><ci>x</ci><cn>5</cn></apply>
      <apply><in/><ci>x</ci><naturalnumbers/></apply>
    </apply>
  </condition>
  <ci>x</ci>
</set>
               
<math>
                  
<mo>{</mo><mrow><mi>x</mi></mrow><mo>|</mo><mrow><mrow><mrow><mrow><mo>(</mo><mi>x</mi><mo>&gt;</mo><mn>5</mn><mo>)</mo></mrow><mo>∧</mo><mrow><mi>x</mi><mo>∈</mo><mi>ℕ</mi></mrow></mrow></mrow></mrow><mo>}</mo>
               
</math>
{x|(x>5)x}
List <list>
                  
<list>
  <ci>a</ci><ci>b</ci><ci>c</ci>
</list>
               
<math>
                  
<mo>(</mo><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow><mo>)</mo>
               
</math>
(a,b,c)
                  
<list order="numeric">
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><lt/><ci>x</ci><cn>5</cn></apply>
  </condition>
</list>
               
<math>
                  
<mo>(</mo><mrow></mrow><mo>|</mo><mrow><mrow><mrow><mi>x</mi><mo>&gt;</mo><mn>5</mn></mrow></mrow></mrow><mo>)</mo>
               
</math>
(|x>5)
Union <union/>
                  
<apply><union/><ci>A</ci><ci>B</ci></apply>
               
<math>
                  
<mrow><mi>A</mi><mo>∪</mo><mi>B</mi></mrow>
               
</math>
AB
                  
<apply><union/>
  <bvar><ci type="set">S</ci></bvar>
  <domainofapplication>
    <ci type="list">L</ci>
  </domainofapplication>
  <ci type="set"> S</ci>
</apply>
               
<math>
                  
<mrow><mi> S</mi></mrow>
               
</math>
S
Intersect <intersect/>
                  
<apply><intersect/>
  <ci type="set"> A </ci>
  <ci type="set"> B </ci>
</apply>
               
<math>
                  
<mrow><mi> A </mi><mo>∩</mo><mi> B </mi></mrow>
               
</math>
A B
                  
<apply><intersect/>
  <bvar><ci type="set">S</ci></bvar>
  <domainofapplication><ci type="list">L</ci></domainofapplication>
  <ci type="set"> S </ci>
</apply>
               
<math>
                  
<mrow><mi> S </mi></mrow>
               
</math>
S
Set inclusion <in/>
                  
<apply><in/><ci>a</ci><ci type="set">A</ci></apply>
               
<math>
                  
<mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow>
               
</math>
aA
Set exclusion <notin/>
                  
<apply><notin/><ci>a</ci><ci type="set">A</ci></apply>
               
<math>
                  
<mrow><mi>a</mi><mo>∉</mo><mi>A</mi></mrow>
               
</math>
aA
Subset <subset/>
                  
<apply><subset/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
<math>
                  
<mrow><mi>A</mi><mo>⊆</mo><mi>B</mi></mrow>
               
</math>
AB
Proper Subset <prsubset/>
                  
<apply><prsubset/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
<math>
                  
<mrow><mi>A</mi><mo>⊂</mo><mi>B</mi></mrow>
               
</math>
AB
Not Subset <notsubset/>
                  
<apply><notsubset/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
<math>
                  
<mrow><mi>A</mi><mo>⊈</mo><mi>B</mi></mrow>
               
</math>
AB
Not Proper Subset <notprsubset/>
                  
<apply><notprsubset/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
<math>
                  
<mrow><mi>A</mi><mo>⊄</mo><mi>B</mi></mrow>
               
</math>
AB
Set Difference <setdiff/>
                  
<apply><setdiff/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
<math>
                  
<mrow><mi>A</mi><mo>∖</mo><mi>B</mi></mrow>
               
</math>
AB
Cardinality <card/>
                  
<apply><eq/>
  <apply><card/><ci>A</ci></apply>
  <cn>5</cn>
</apply>
               
<math>
                  
<mrow><mrow><mi>card</mi><mo>⁡</mo><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow><mo>=</mo><mn>5</mn></mrow>
               
</math>
card(A)=5
Cartesian product <cartesianproduct/>
                  
<apply><cartesianproduct/><ci>A</ci><ci>B</ci></apply>
               
<math>
                  
<mrow><mi>A</mi><mo>×</mo><mi>B</mi></mrow>
               
</math>
A×B

Sequences and Series

Sum <sum/>
                  
<apply><sum/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><ci>a</ci></lowlimit>
  <uplimit><ci>b</ci></uplimit>
  <apply><ci>f</ci><ci>x</ci></apply>
</apply>
               
<math>
                  
<mrow><munderover><mo>∑</mo><mrow><ci>x</ci><mo>=</mo><mi>a</mi></mrow><mjrow><mi>b</mi></mjrow></munderover><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mrow>
               
</math>
x=abf(x)
                  
<apply><sum/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><in/><ci>x</ci><ci type="set">B</ci></apply>
  </condition>
  <apply><ci type="function">f</ci><ci>x</ci></apply>
</apply>
               
<math>
                  
<mrow><munderover><mo>∑</mo><mrow><mrow><mi>x</mi><mo>∈</mo><mi>B</mi></mrow></mrow><mjrow></mjrow></munderover><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mrow>
               
</math>
xBf(x)
                  
<apply><sum/>
  <domainofapplication>
    <ci type="set">B</ci>
  </domainofapplication>
  <ci type="function">f</ci>
</apply>
               
<math>
                  
<mrow><munderover><mo>∑</mo><mrow><mi>B</mi></mrow><mjrow></mjrow></munderover><mi>f</mi></mrow>
               
</math>
Bf
                  
<apply><sum/>
  <bvar><ci>i</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>100</cn></uplimit>
  <apply><power/><ci>x</ci><ci>i</ci></apply>
</apply>
               
<math>
                  
<mrow><munderover><mo>∑</mo><mrow><ci>i</ci><mo>=</mo><mn>0</mn></mrow><mjrow><mn>100</mn></mjrow></munderover><msup><mi>x</mi><mi>i</mi></msup></mrow>
               
</math>
i=0100xi
                  
<apply><csymbol cd="arith1">sum</csymbol>
  <apply><csymbol cd="interval1">integer_interval</csymbol>
    <cn>0</cn>
    <cn>100</cn>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>i</ci></bvar>
    <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>
  </bind>
</apply>
               
<math>
                  
<mrow><munderover><mo>∑</mo><mrow></mrow><mjrow></mjrow></munderover><mrow><mi>integer_interval</mi><mo>⁡</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>100</mn><mo>)</mo></mrow></mrow><mrow><mo>λ</mo><mi>i</mi><mo>.</mo><msup><mi>x</mi><mi>i</mi></msup></mrow></mrow>
               
</math>
integer_interval(0,100)λi.xi
Product <product/>
                  
<apply><product/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><ci>a</ci></lowlimit>
  <uplimit><ci>b</ci></uplimit>
  <apply><ci type="function">f</ci>
    <ci>x</ci>
  </apply>
</apply>
               
<math>
                  
<mrow><munderover><mo>∏</mo><mrow><ci>x</ci><mo>=</mo><mi>a</mi></mrow><mjrow><mi>b</mi></mjrow></munderover><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mrow>
               
</math>
x=abf(x)
                  
<apply><product/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><in/>
      <ci>x</ci>
      <ci type="set">B</ci>
    </apply>
  </condition>
  <apply><ci>f</ci><ci>x</ci></apply>
</apply>
               
<math>
                  
<mrow><munderover><mo>∏</mo><mrow><mrow><mi>x</mi><mo>∈</mo><mi>B</mi></mrow></mrow><mjrow></mjrow></munderover><mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mrow>
               
</math>
xBf(x)
                  
<apply><product/>
  <bvar><ci>i</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>100</cn></uplimit>
  <apply><power/><ci>x</ci><ci>i</ci></apply>
</apply>
               
<math>
                  
<mrow><munderover><mo>∏</mo><mrow><ci>i</ci><mo>=</mo><mn>0</mn></mrow><mjrow><mn>100</mn></mjrow></munderover><msup><mi>x</mi><mi>i</mi></msup></mrow>
               
</math>
i=0100xi
                  
<apply><csymbol cd="arith1">product</csymbol>
  <apply><csymbol cd="interval1">integer_interval</csymbol>
    <cn>0</cn>
    <cn>100</cn>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>i</ci></bvar>
    <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>
  </bind>
</apply>
               
<math>
                  
<mrow><munderover><mo>∏</mo><mrow></mrow><mjrow></mjrow></munderover><mrow><mi>integer_interval</mi><mo>⁡</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>100</mn><mo>)</mo></mrow></mrow><mrow><mo>λ</mo><mi>i</mi><mo>.</mo><msup><mi>x</mi><mi>i</mi></msup></mrow></mrow>
               
</math>
integer_interval(0,100)λi.xi
Limits <limit/>
                  
<apply><limit/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <apply><sin/><ci>x</ci></apply>
</apply>
               
<math>
                  
<mrow><mi>limit</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow>
               
</math>
limit(sin(x))
                  
<apply><limit/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><tendsto/><ci>x</ci><cn>0</cn></apply>
  </condition>
  <apply><sin/><ci>x</ci></apply>
</apply>
               
<math>
                  
<mrow><mi>limit</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow>
               
</math>
limit(sin(x))
                  
<apply><limit/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><tendsto type="above"/><ci>x</ci><ci>a</ci></apply>
  </condition>
  <apply><sin/><ci>x</ci></apply>
</apply>
               
<math>
                  
<mrow><mi>limit</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow>
               
</math>
limit(sin(x))
Rewrite: limits condition
                  
<apply><limit/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><tendsto/><ci>x</ci><cn>0</cn></apply>
  </condition>
  <ci>expression-in-x</ci>
</apply>
               
<math>
                  
<mrow><mi>limit</mi><mo>⁡</mo><mrow><mo>(</mo><mi>expression-in-x</mi><mo>)</mo></mrow></mrow>
               
</math>
limit(expression-in-x)
                  
<apply><csymbol cd="limit1">limit</csymbol>
  <cn>0</cn>
  <csymbol cd="limit1">null</csymbol>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>expression-in-x</ci>
  </bind>
</apply>
               
<math>
                  
<mrow><mi>limit</mi><mo>⁡</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>null</mi><mo>,</mo><mrow><mo>λ</mo><mi>x</mi><mo>.</mo><mi>expression-in-x</mi></mrow><mo>)</mo></mrow></mrow>
               
</math>
limit(0,null,λx.expression-in-x)
Tends To <tendsto/>
                  
<apply><tendsto type="above"/>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
   <apply><power/><ci>a</ci><cn>2</cn></apply>
</apply>
               
<math>
                  
<mrow><msup><mi>x</mi><mn>2</mn></msup><mo>↘</mo><msup><mi>a</mi><mn>2</mn></msup></mrow>
               
</math>
x2a2
                  
<apply><tendsto/>
  <vector><ci>x</ci><ci>y</ci></vector>
   <vector>
     <apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply>
     <apply><ci type="function">g</ci><ci>x</ci><ci>y</ci></apply>
   </vector>
</apply>
               
<math>
                  
<mrow><vector><mi>x</mi><mi>y</mi></vector><mo>→</mo><vector>
     <mrow><mi>f</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow>
     <mrow><mi>g</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow>
   </vector></mrow>
               
</math>
xy f(x,y) g(x,y)
Rewrite: tendsto
                  
<tendsto/>

               
<math>
                  
<mi>tendsto</mi>

               
</math>
tendsto
                  
<semantics>
 <ci>tendsto</ci>
 <annotation-xml encoding="MathML-Content">
  <tendsto/>
 </annotation-xml>
</semantics>
               
<math>
                  
<mrow><mi>tendsto</mi></mrow>
               
</math>
tendsto

Elementary classical functions

Common trigonometric functions <sin/>, <cos/>, <tan/>, <sec/>, <csc/>, <cot/>
                  
<apply><sin/><ci>x</ci></apply>
               
<math>
                  
<mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow>
               
</math>
sin(x)
                  
<apply><sin/>
  <apply><plus/>
    <apply><cos/><ci>x</ci></apply>
    <apply><power/><ci>x</ci><cn>3</cn></apply>
  </apply>
</apply>
               
<math>
                  
<mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mrow><mrow><mi>cos</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>+</mo><msup><mi>x</mi><mn>3</mn></msup></mrow><mo>)</mo></mrow></mrow>
               
</math>
sin(cos(x)+x3)
Common inverses of trigonometric functions <arcsin/>, <arccos/>, <arctan/>, <arcsec/>, <arccsc/>, <arccot/>
                  
<apply><arcsin/><ci>x</ci></apply>
               
<math>
                  
<mrow><mi>arcsin</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow>
               
</math>
arcsin(x)
                  
<mrow>
 <mi>arcsin</mi>
 <mo>&#x2061;</mo>
 <mi>x</mi>
</mrow>
               
<math>
                  
<mrow>
 <mi>arcsin</mi>
 <mo>⁡</mo>
 <mi>x</mi>
<mi>arcsin</mi><mo>⁡</mo><mi>x</mi></mrow></math>
arcsin x arcsinx
                  
<mrow>
 <msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup>
 <mo>&#x2061;</mo>
 <mi>x</mi>
</mrow>
               
<math>
                  
<mrow>
 <msup><mi>sin</mi></msup>
 <mo>⁡</mo>
 <mi>x</mi>
<msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn><mo>-</mo><mn>1</mn></mrow></msup><mo>⁡</mo><mi>x</mi></mrow></math>
sin x sin-1-1x
Common hyperbolic functions <sinh/>, <cosh/>, <tanh/>, <sech/>, <csch/>, <coth/>
                  
<apply><sinh/><ci>x</ci></apply>
               
<math>
                  
<mrow><mi>sinh</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow>
               
</math>
sinh(x)
Common inverses of hyperbolic functions <arcsinh/>, <arccosh/>, <arctanh/>, <arcsech/>, <arccsch/>, <arccoth/>
                  
<apply><arcsinh/><ci>x</ci></apply>
               
<math>
                  
<mrow><mi>arcsinh</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow>
               
</math>
arcsinh(x)
                  
<mrow>
 <mi>arcsinh</mi>
 <mo>&#x2061;</mo>
 <mi>x</mi>
</mrow>
               
<math>
                  
<mrow>
 <mi>arcsinh</mi>
 <mo>⁡</mo>
 <mi>x</mi>
<mi>arcsinh</mi><mo>⁡</mo><mi>x</mi></mrow></math>
arcsinh x arcsinhx
                  
<mrow>
 <msup><mi>sinh</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup>
 <mo>&#x2061;</mo>
 <mi>x</mi>
</mrow>
               
<math>
                  
<mrow>
 <msup><mi>sinh</mi></msup>
 <mo>⁡</mo>
 <mi>x</mi>
<msup><mi>sinh</mi><mrow><mo>-</mo><mn>1</mn><mo>-</mo><mn>1</mn></mrow></msup><mo>⁡</mo><mi>x</mi></mrow></math>
sinh x sinh-1-1x
Exponential <exp/>
                  
<apply><exp/><ci>x</ci></apply>
               
<math>
                  
<mrow><mi>exp</mi><mo>⁡</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow>
               
</math>
exp(x)
Natural Logarithm <ln/>
                  
<apply><ln/><ci>a</ci></apply>
               
<math>
                  
<mrow><mi>ln</mi><mo>⁡</mo><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow>
               
</math>
ln(a)
Logarithm <log/> , <logbase>
                  
<apply><log/>
  <logbase><cn>3</cn></logbase>
  <ci>x</ci>
</apply>
               
<math>
                  
<mrow><msub><mi>log</mi><mn>3</mn></msub><mi>x</mi></mrow>
               
</math>
log3x
                  
<apply><log/><ci>x</ci></apply>
               
<math>
                  
<mrow><mi>log</mi><mi>x</mi></mrow>
               
</math>
logx
                  <apply><plus/>
  <apply>
    <log/>
    <logbase><cn>2</cn></logbase>
    <ci>x</ci>
  </apply>
  <apply>
    <log/>
    <ci>y</ci>
  </apply>
</apply>


               
<math>
                  <mrow><mrow><msub><mi>log</mi><mn>2</mn></msub><mi>x</mi></mrow><mo>+</mo><mrow><mi>log</mi><mi>y</mi></mrow></mrow>


               
</math>
log2x+logy
                  <apply>
  <csymbol cd="arith1">plus</csymbol>
  <apply>
    <csymbol cd="transc1">log</csymbol>
    <cn>2</cn>
    <ci>x</ci>
  </apply>
  <apply>
    <csymbol cd="transc1">log</csymbol>
    <cn>10</cn>
    <ci>y</ci>
  </apply>
</apply>
               
<math>
                  <mrow><mrow><mi>log</mi><mn>2</mn></mrow><mo>+</mo><mrow><mi>log</mi><mn>10</mn></mrow></mrow>
               
</math>
log2+log10

Statistics

Mean <mean/>
                  
<apply><mean/>
  <cn>3</cn><cn>4</cn><cn>3</cn><cn>7</cn><cn>4</cn>
</apply>
               
<math>
                  
<mrow><mi>mean</mi><mo>⁡</mo><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>4</mn><mo>)</mo></mrow></mrow>
               
</math>
mean(3,4,3,7,4)
                  
<apply><mean/><ci>X</ci></apply>
               
<math>
                  
<mrow><mi>mean</mi><mo>⁡</mo><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow>
               
</math>
mean(X)
Standard Deviation <sdev/>
                  
<apply><sdev/>
  <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>
               
<math>
                  
<mrow><mi>sdev</mi><mo>⁡</mo><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow>
               
</math>
sdev(3,4,2,2)
                  
<apply><sdev/>
  <ci type="discrete_random_variable">X</ci>
</apply>
               
<math>
                  
<mrow><mi>sdev</mi><mo>⁡</mo><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow>
               
</math>
sdev(X)
Variance <variance/>
                  
<apply><variance/>
  <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>
               
<math>
                  
<mrow><mi>variance</mi><mo>⁡</mo><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow>
               
</math>
variance(3,4,2,2)
                  
<apply><variance/>
  <ci type="discrete_random_variable"> X</ci>
</apply>
               
<math>
                  
<mrow><mi>variance</mi><mo>⁡</mo><mrow><mo>(</mo><mi> X</mi><mo>)</mo></mrow></mrow>
               
</math>
variance( X)
Median <median/>
                  
<apply><median/>
  <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>
               
<math>
                  
<mrow><mi>median</mi><mo>⁡</mo><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow>
               
</math>
median(3,4,2,2)
Mode <mode/>
                  
<apply><mode/>
  <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>
               
<math>
                  
<mrow><mi>mode</mi><mo>⁡</mo><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow>
               
</math>
mode(3,4,2,2)
Moment <moment/>, <momentabout>
                  
<apply><moment/>
  <degree><cn>3</cn></degree>
  <momentabout><mean/></momentabout>
  <cn>6</cn><cn>4</cn><cn>2</cn><cn>2</cn><cn>5</cn>
</apply>
               
<math>
                  
<mrow><mi>moment</mi><mo>⁡</mo><mrow><mo>(</mo><momentabout><mi>mean</mi></momentabout><mo>,</mo><mn>6</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>5</mn><mo>)</mo></mrow></mrow>
               
</math>
moment(mean,6,4,2,2,5)
                  
<apply><moment/>
  <degree><cn>3</cn></degree>
  <momentabout><ci>p</ci></momentabout>
  <ci>X</ci>
</apply>
               
<math>
                  
<mrow><mi>moment</mi><mo>⁡</mo><mrow><mo>(</mo><momentabout><mi>p</mi></momentabout><mo>,</mo><mi>X</mi><mo>)</mo></mrow></mrow>
               
</math>
moment(p,X)
                  
<apply><moment/>
  <degree><cn>3</cn></degree>
  <momentabout><ci>p</ci></momentabout>
  <ci>X</ci>
</apply>
               
<math>
                  
<mrow><mi>moment</mi><mo>⁡</mo><mrow><mo>(</mo><momentabout><mi>p</mi></momentabout><mo>,</mo><mi>X</mi><mo>)</mo></mrow></mrow>
               
</math>
moment(p,X)
                  
<apply><csymbol cd="s_dist1">moment</csymbol>
  <cn>3</cn>
  <ci>p</ci>
  <ci>X</ci>
</apply>
               
<math>
                  
<mrow><mi>moment</mi><mo>⁡</mo><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>p</mi><mo>,</mo><mi>X</mi><mo>)</mo></mrow></mrow>
               
</math>
moment(3,p,X)

Linear Algebra

Vector <vector>
                  
<vector>
  <apply><plus/><ci>x</ci><ci>y</ci></apply>
  <cn>3</cn>
  <cn>7</cn>
</vector>
               
<math>
                  
<vector>
  <mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow>
  <mn>3</mn>
  <mn>7</mn>
</vector>
               
</math>
x+y 3 7
Matrix <matrix>
                  
<matrix>
  <bvar><ci type="integer">i</ci></bvar>
  <bvar><ci type="integer">j</ci></bvar>
  <condition>
    <apply><and/>
      <apply><in/>
        <ci>i</ci>
        <interval><ci>1</ci><ci>5</ci></interval>
      </apply>
      <apply><in/>
        <ci>j</ci>
        <interval><ci>5</ci><ci>9</ci></interval>
      </apply>
    </apply>
  </condition>
  <apply><power/><ci>i</ci><ci>j</ci></apply>
</matrix>
               
<math>
                  
<mrow><mo>[</mo><msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>|</mo><msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>=</mo><msup><mi>i</mi><mi>j</mi></msup><mo>;</mo><mrow><mrow><mrow><mi>i</mi><mo>∈</mo><mo>[</mo><mrow><mi>1</mi><mo>,</mo><mi>5</mi></mrow><mo>]</mo></mrow><mo>∧</mo><mrow><mi>j</mi><mo>∈</mo><mo>[</mo><mrow><mi>5</mi><mo>,</mo><mi>9</mi></mrow><mo>]</mo></mrow></mrow></mrow><mo>]</mo></mrow>
               
</math>
[mi,j|mi,j=ij;i[1,5]j[5,9]]
Matrix row <matrixrow>
Determinant <determinant/>
                  
<apply><determinant/>
  <ci type="matrix">A</ci>
</apply>
               
<math>
                  
<mrow><mi>determinant</mi><mo>⁡</mo><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow>
               
</math>
determinant(A)
Transpose <transpose/>
                  
<apply><transpose/>
  <ci type="matrix">A</ci>
</apply>
               
<math>
                  
<mrow><mi>transpose</mi><mo>⁡</mo><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow>
               
</math>
transpose(A)
Selector <selector/>
                  
<apply><selector/><ci type="vector">V</ci><cn>1</cn></apply>
               
<math>
                  
<msub><mi>V</mi><mrow><mn>1</mn></mrow></msub>
               
</math>
V1
                  
<apply><eq/>
  <apply><selector/>
    <matrix>
      <matrixrow><cn>1</cn><cn>2</cn></matrixrow>
      <matrixrow><cn>3</cn><cn>4</cn></matrixrow>
    </matrix>
    <cn>1</cn>
  </apply>
  <matrix>
    <matrixrow><cn>1</cn><cn>2</cn></matrixrow>
  </matrix>
</apply>
               
<math>
                  
<mrow><msub><mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mrow><mn>1</mn></mrow></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></mrow>
               
</math>
12341=12
Vector product <vectorproduct/>
                  
<apply><eq/>
  <apply><vectorproduct/>
    <ci type="vector"> A </ci>
    <ci type="vector"> B </ci>
 </apply>
  <apply><times/>
    <ci>a</ci>
    <ci>b</ci>
    <apply><sin/><ci>&#x3b8;</ci></apply>
    <ci type="vector"> N </ci>
  </apply>
</apply>
               
<math>
                  
<mrow><mrow><mi> A </mi><mo>×</mo><mi> B </mi></mrow><mo>=</mo><mrow><mi>a</mi><mo>⁢</mo><mi>b</mi><mo>⁢</mo><mrow><mi>sin</mi><mo>⁡</mo><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow><mo>⁢</mo><mi> N </mi></mrow></mrow>
               
</math>
A × B =absin(θ) N
Scalar product <scalarproduct/>
                  
<apply><eq/>
  <apply><scalarproduct/>
    <ci type="vector">A</ci>
    <ci type="vector">B</ci>
  </apply>
  <apply><times/>
    <ci>a</ci>
    <ci>b</ci>
    <apply><cos/><ci>&#x3b8;</ci></apply>
  </apply>
</apply>
               
<math>
                  
<mrow><mrow><mi>A</mi><mo>.</mo><mi>B</mi></mrow><mo>=</mo><mrow><mi>a</mi><mo>⁢</mo><mi>b</mi><mo>⁢</mo><mrow><mi>cos</mi><mo>⁡</mo><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></mrow></mrow>
               
</math>
A.B=abcos(θ)
Outer product <outerproduct/>
                  
<apply><outerproduct/>
  <ci type="vector">A</ci>
  <ci type="vector">B</ci>
</apply>
               
<math>
                  
<mrow><mi>A</mi><mo>⊗</mo><mi>B</mi></mrow>
               
</math>
AB

Constant and Symbol Elements

integers <integers/>
                  
<apply><in/>
  <cn type="integer"> 42 </cn>
  <integers/>
</apply>
               
<math>
                  
<mrow><mrow></mrow><mo>∈</mo><mi>ℤ</mi></mrow>
               
</math>
reals <reals/>
                  
<apply><in/>
  <cn type="real"> 44.997</cn>
  <reals/>
</apply>
               
<math>
                  
<mrow><mrow><mi>real</mi><mo>⁡</mo><mrow><mo>(</mo><mrow></mrow><mo>)</mo></mrow></mrow><mo>∈</mo><mi>ℝ</mi></mrow>
               
</math>
real()
Rational Numbers <rationals/>
                  
<apply><in/>
  <cn type="rational"> 22 <sep/>7</cn>
  <rationals/>
</apply>
               
<math>
                  
<mrow><mfrac><mrow><cn> 22 </cn><mn> 22 </mn></mrow><mrow><cn>7</cn><mn>7</mn></mrow></mfrac><mo>∈</mo><mi>ℚ</mi></mrow>
               
</math>
22 22 77
Natural Numbers <naturalnumbers/>
                  
<apply><in/>
  <cn type="integer">1729</cn>
  <naturalnumbers/>
</apply>
               
<math>
                  
<mrow><mrow></mrow><mo>∈</mo><mi>ℕ</mi></mrow>
               
</math>
complexes <complexes/>
                  
<apply><in/>
  <cn type="complex-cartesian">17<sep/>29</cn>
  <complexes/>
</apply>
               
<math>
                  
<mrow><mrow><mrow><cn>17</cn><mn>17</mn></mrow><mo>+</mo><mrow><cn>29</cn><mn>29</mn></mrow><mo>⁢</mo><mi>i</mi></mrow><mo>∈</mo><mi>ℂ</mi></mrow>
               
</math>
1717+2929i
primes <primes/>
                  
<apply><in/>
  <cn type="integer">17</cn>
  <primes/>
</apply>
               
<math>
                  
<mrow><mrow></mrow><mo>∈</mo><mi>ℙ</mi></mrow>
               
</math>
Exponential e <exponentiale/>
                  
<apply><eq/>
  <apply><ln/><exponentiale/></apply>
  <cn>1</cn>
</apply>
               
<math>
                  
<mrow><mrow><mi>ln</mi><mo>⁡</mo><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow><mo>=</mo><mn>1</mn></mrow>
               
</math>
ln(e)=1
Imaginary i <imaginaryi/>
                  
<apply><eq/>
  <apply><power/><imaginaryi/><cn>2</cn></apply>
  <cn>-1</cn>
</apply>
               
<math>
                  
<mrow><msup><mi>i</mi><mn>2</mn></msup><mo>=</mo><mn>-1</mn></mrow>
               
</math>
i2=-1
Not A Number <notanumber/>
                  
<apply><eq/>
  <apply><divide/><cn>0</cn><cn>0</cn></apply>
  <notanumber/>
</apply>
               
<math>
                  
<mrow><mrow><mn>0</mn><mo>/</mo><mn>0</mn></mrow><mo>=</mo><mi>NaN</mi></mrow>
               
</math>
0/0=NaN
True <true/>
                  
<apply><eq/>
  <apply><or/>
    <true/>
     <ci type="boolean">P</ci>
  </apply>
  <true/>
</apply>
               
<math>
                  
<mrow><mrow><mi>true</mi><mo>∨</mo><mi>P</mi></mrow><mo>=</mo><mi>true</mi></mrow>
               
</math>
trueP=true
False <false/>
                  
<apply><eq/>
  <apply><and/>
    <false/>
    <ci type="boolean">P</ci>
  </apply>
  <false/>
</apply>
               
<math>
                  
<mrow><mrow><mi>false</mi><mo>∧</mo><mi>P</mi></mrow><mo>=</mo><mi>false</mi></mrow>
               
</math>
falseP=false
Empty Set <emptyset/>
                  
<apply><neq/>
  <integers/>
  <emptyset/>
</apply>
               
<math>
                  
<mrow><mi>ℤ</mi><mo>≠</mo><mi>∅</mi></mrow>
               
</math>
pi <pi/>
                  
<apply><approx/>
  <pi/>
  <cn type="rational">22<sep/>7</cn>
</apply>
               
<math>
                  
<mrow><mi>π</mi><mo>≃</mo><mfrac><mrow><cn>22</cn><mn>22</mn></mrow><mrow><cn>7</cn><mn>7</mn></mrow></mfrac></mrow>
               
</math>
π222277
Euler gamma <eulergamma/>
                  
<apply><approx/>
  <eulergamma/>
  <cn>0.5772156649</cn>
</apply>
               
<math>
                  
<mrow><mi>γ</mi><mo>≃</mo><mn>0.5772156649</mn></mrow>
               
</math>
γ0.5772156649
infinity <infinity/>
                  <infinity/>
               
<math>
                  <mi>∞</mi>
               
</math>

Deprecated Content Elements

Declare <declare>

Relation <reln>

Relation <fn>

The Strict Content MathML Transformation