MathML | MathML (default intents) | MathML (explicit intents) | TeX | Comments | |
---|---|---|---|---|---|
Numbers | |||||
§ <math display='block'> <mn>1,234</mn> <mo>+</mo> <mn>1,234</mn> </math> 1234 plus 1234
§ <math intent=':common' display='block'> 1234 plus 1234
§ <math intent=':literal' display='block'> 1234 plus 1234
|
§ <math display='block'> <mn intent='1.234:decimal-comma'>1,234</mn> <mo>+</mo> <mn intent='1.234:decimal-comma'>1,234</mn> </math> 1.234 plus 1.234
§ <math display='block'> <mn intent=':decimal-comma'>1,234</mn> <mo>+</mo> <mn intent=':decimal-comma'>1,234</mn> </math> 1234 plus 1234
|
1,234+1{,}234 | decimal comma | ||
§ <math display='block'> <mn>1,234</mn> <mo>;</mo> <mn>1,234</mn> <mo>;</mo> <mn>1,234,000</mn> </math> 1234 semicolon 1234 semicolon 1234000
§ <math intent=':common' display='block'> 1234 semicolon 1234 semicolon 1234000
§ <math intent=':literal' display='block'> 1234 semicolon 1234 semicolon 1234000
|
§ <math display='block' mathbackground='yellow'> <mn intent='1234:thousands-comma'>1,234</mn> <mo>;</mo> <mn intent='1234:thousands-comma'>1,234</mn> <mo>;</mo> <mn intent='1234000:thousands-comma'>1,234,000</mn> </math> 1234 semicolon 1234 semicolon 1234000
§ <math display='block' mathbackground='yellow'> <mn intent=':thousands-comma'>1,234</mn> <mo>;</mo> <mn intent=':thousands-comma'>1,234</mn> <mo>;</mo> <mn intent=':thousands-comma'>1,234,000</mn> </math> 1234 semicolon 1234 semicolon 1234000
|
1,234; 1,234; 1,234,000 | grouping comma | ||
§ <math display='block'> <mn>−3</mn> </math> negative 3
§ <math intent=':common' display='block'> negative 3
§ <math intent=':literal' display='block'> minus 3
|
§ <math display='block'> <mn intent='-3'>−3</mn> </math> minus 3
|
-3 | mn -3 | ||
§ <math display='block'> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </math> negative 3
§ <math intent=':common' display='block'> negative 3
§ <math intent=':literal' display='block'> minus 3
|
§ <math display='block'> <mrow intent='-3'> <mo>−</mo> <mn>3</mn> </mrow> </math> minus 3
|
-3 | mrow mo -3 | ||
§ <math display='block'> <mn>X</mn><mo>,</mo><mn>XVI</mn> </math> 10 comma, 16
§ <math intent=':common' display='block'> 10 comma, 16
§ <math intent=':literal' display='block'> x comma, XVI
|
§ <math display='block'> <mn intent=':roman-numeral'>X</mn><mo>,</mo><mn intent=':roman-numeral'>XVI</mn> </math> 10 comma, 16
|
\text{X},\text{XVI} | Roman Numerals | ||
Super and Sub Scripts | |||||
§ <math display='block'> <msup> <mi>x</mi> <mn>2</mn> </msup> </math> x squared
§ <math intent=':common' display='block'> x squared
§ <math intent=':literal' display='block'> x super 2 end super
|
§ <math display='block'> <msup> <mi>x</mi> <mn>2</mn> </msup> </math> x squared
|
x^2 | squared | ||
§ <math display='block'> <msup> <mi>x</mi> <mn>3</mn> </msup> </math> x cubed
§ <math intent=':common' display='block'> x cubed
§ <math intent=':literal' display='block'> x super 3 end super
|
§ <math display='block'> <msup> <mi>x</mi> <mn>3</mn> </msup> </math> x cubed
|
x^3 | cubed | ||
§ <math display='block'> <msup> <mi mathvariant='normal'>H</mi> <mn>2</mn> </msup> </math> h squared
§ <math intent=':common' display='block'> h squared
§ <math intent=':literal' display='block'> h super 2 end super
|
§ <math display='block'> <msup intent='index($H,$n)'> <mi arg='H' mathvariant='normal'>H</mi> <mn arg='n'>2</mn> </msup> </math> index of, h comma 2
§ <math display='block'> <msup intent='index:silent($H,$n)'> <mi arg='H' mathvariant='normal'>H</mi> <mn arg='n'>2</mn> </msup> </math> h 2
|
\mathrm{H}^2 | 2nd Cohomology | ||
§ <math display='block'> <msup> <mi>ℝ</mi> <mn>2</mn> </msup> </math> R 2
§ <math intent=':common' display='block'> R 2
§ <math intent=':literal' display='block'> double-struck r super 2 end super
|
§ <math display='block'> <msup intent='vector-space-power($R,$n)'> <mi arg='R'>ℝ</mi> <mn arg='n'>2</mn> </msup> </math> vector space power of, the real numbers comma 2
§ <math display='block'> <msup intent='vector-space-power:silent(_R,$n)'> <mi arg='R'>ℝ</mi> <mn arg='n'>2</mn> </msup> </math> R 2
|
\mathbb{R}^2 | R 2 | ||
§ <math display='block'> <msup> <mi>x</mi> <mi>n</mi> </msup> </math> x to the n-th
§ <math intent=':common' display='block'> x to the n-th
§ <math intent=':literal' display='block'> x super n end super
|
§ <math display='block'> <msup> <mi>x</mi> <mi>n</mi> </msup> </math> x to the n-th
|
x^n | x to nth | ||
§ <math display='block'> <msup> <mi>x</mi> <mo>†<!-- U+2020--></mo> </msup> </math> x dagger,
§ <math intent=':common' display='block'> x dagger,
§ <math intent=':literal' display='block'> x dagger
|
§ <math display='block'> <msup intent='x-dagger'> <mi>x</mi> <mo>†<!-- U+2020--></mo> </msup> </math> x dagger
|
x^\dagger | dagger | ||
§ <math display='block'> <msup> <mi>x</mi> <mi mathvariant='normal'>T</mi> </msup> </math> x transpose
§ <math intent=':common' display='block'> x transpose
§ <math intent=':literal' display='block'> x super t end super
|
§ <math display='block'> <msup intent='$op($arg)'> <mi arg='arg'>x</mi> <mi arg='op' intent='transpose' mathvariant='normal'>T</mi> </msup> </math> x transpose
§ <math display='block' mathbackground='yellow'> <msup intent='$op:function($arg)'> <mi arg='arg'>x</mi> <mi arg='op' intent='transpose' mathvariant='normal'>T</mi> </msup> </math> transpose of, x
§ <math display='block' mathbackground='yellow'> <msup intent='transpose:function($arg)'> <mi arg='arg'>x</mi> <mi arg='op' intent='transpose' mathvariant='normal'>T</mi> </msup> </math> transpose of, x
§ <math display='block'> <msup intent='_($op, _of, $arg)'> <mi arg='arg'>x</mi> <mi arg='op' intent='transpose' mathvariant='normal'>T</mi> </msup> </math> transpose of x
§ <math display='block'> <msup intent='_:silent($op, _of, $arg)'> <mi arg='arg'>x</mi> <mi arg='op' intent='transpose' mathvariant='normal'>T</mi> </msup> </math> transpose of x
§ <math display='block' mathbackground='yellow'> <msup intent='_transpose($arg)'> <mi arg='arg'>x</mi> <mi arg='op' intent='transpose' mathvariant='normal'>T</mi> </msup> </math> transpose of, x
|
x^{\mathrm{T}} | x transpose | ||
§ <math display='block'> <mmultiscripts> <mi>x</mi> <mprescripts/> <mrow/> <mi mathvariant='normal'>T</mi> </mmultiscripts> </math> x pre superscript t,
§ <math intent=':common' display='block'> x pre superscript t,
§ <math intent=':literal' display='block'> x pre superscript t,
|
§ <math display='block'> <mmultiscripts intent='$op($arg)'> <mi arg='arg'>x</mi> <mprescripts/> <mrow/> <mi arg='op' intent='transpose' mathvariant='normal'>T</mi> </mmultiscripts> </math> x transpose
§ <math display='block' mathbackground='yellow'> <mmultiscripts intent='$op:function($arg)'> <mi arg='arg'>x</mi> <mprescripts/> <mrow/> <mi arg='op' intent='transpose' mathvariant='normal'>T</mi> </mmultiscripts> </math> transpose of, x
§ <math display='block'> <mmultiscripts intent='_($op, _of, $arg)'> <mi arg='arg'>x</mi> <mprescripts/> <mrow/> <mi arg='op' intent='transpose' mathvariant='normal'>T</mi> </mmultiscripts> </math> transpose of x
§ <math display='block'> <mmultiscripts intent='_:silent($op, _of, $arg)'> <mi arg='arg'>x</mi> <mprescripts/> <mrow/> <mi arg='op' intent='transpose' mathvariant='normal'>T</mi> </mmultiscripts> </math> transpose of x
|
{}^{\mathrm{T}}x | x transpose pre-sup | ||
§ <math display='block'> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi mathvariant='normal'>T</mi> </msubsup> </math> x sub i j end subscript, to the t-th
§ <math intent=':common' display='block'> x sub i j end subscript, to the t-th
§ <math intent=':literal' display='block'> x sub i j super t end super
|
§ <math display='block'> <msubsup intent='transpose(index:silent($x,$sub))'> <mi arg='x'>x</mi> <mrow arg='sub' intent=':index'> <mi>i</mi> <mi>j</mi> </mrow> <mi mathvariant='normal'>T</mi> </msubsup> </math> x i j transpose
§ <math display='block'> <msubsup> <mi>x</mi> <mrow arg='sub' intent=':index'> <mi>i</mi> <mi>j</mi> </mrow> <mi intent='transpose:postfix' mathvariant='normal'>T</mi> </msubsup> </math> x sub i j end subscript, to the transpose
§ <math display='block'> <msubsup intent='transpose(sub:infix($base, $sub))'> <mi arg='base'>x</mi> <mrow arg='sub' intent=':index'> <mi>i</mi> <mi>j</mi> </mrow> <mi>T</mi> </msubsup> </math> , x sub i j, transpose
|
x_{ij}^{\mathrm{T}} | x sub transpose | ||
§ <math display='block'> <msup> <mn>4</mn> <mi>th</mi> </msup> </math> 4 to the th
§ <math intent=':common' display='block'> 4 to the th
§ <math intent=':literal' display='block'> 4 super th end super
|
§ <math display='block'> <msup> <mn>4</mn> <mi intent='ordinal-mark'>th</mi> </msup> </math> 4 to the ordinal mark
§ <math display='block'> <msup intent='ordinal-mark:silent($n,$th)'> <mn arg='n'>4</mn> <mi arg='th'>th</mi> </msup> </math> 4 th
§ <math display='block'> <msup intent='_4th'> <mn>4</mn> <mi>th</mi> </msup> </math> 4th
|
4{\mathrm{th} | ordinal 4th | ||
§ <math display='block'> <mrow> <mi>A</mi> <mo>=</mo> <munderover> <mo>∑</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>∞</mi> </munderover> <msub> <mi>a</mi> <mi>n</mi> </msub> <msup> <mi>X</mi> <mi>n</mi> </msup> <mo>∈</mo> <mrow> <mi>R</mi> <mo>⟦</mo> <mi>X</mi> <mo>⟧</mo> </mrow> </mrow> </math> eigh is equal to; the sum from n is equal to 0 to infinity of; eigh sub n x to the n-th; is an element of; r, left white square bracket, x right white square bracket
§ <math intent=':common' display='block'> eigh is equal to; the sum from n is equal to 0 to infinity of; eigh sub n x to the n-th; is an element of; r, left white square bracket, x right white square bracket
§ <math intent=':literal' display='block'> eigh is equal to; sum with n is equal to 0 below and infinity above; eigh sub n x super n end super; is an element of; r, left white square bracket, x right white square bracket
|
§ <math display='block'> <mrow> <mi>A</mi> <mo>=</mo> <munderover> <mo>∑</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>∞</mi> </munderover> <msub> <mi>a</mi> <mi>n</mi> </msub> <msup> <mi>X</mi> <mi>n</mi> </msup> <mo>∈</mo> <mrow intent='power-series($r,$x)'> <mi arg='r'>R</mi> <mo>⟦</mo> <mi arg='x'>X</mi> <mo>⟧</mo> </mrow> </mrow> </math> eigh is equal to; the sum from n is equal to 0 to infinity of; eigh sub n x to the n-th; is an element of, power series of, r comma x
§ <math display='block'> <mrow> <mi>A</mi> <mo>=</mo> <munderover> <mo>∑</mo> <mrow intent='_(0)'> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>∞</mi> </munderover> <msub> <mi>a</mi> <mi>n</mi> </msub> <msup intent='_power:silent($x,_to_the,$n)'> <mi arg='x'>X</mi> <mi arg='n'>n</mi> </msup> <mo>∈</mo> <mrow intent='power-series:silent( $r,_power_series,_over,$x)'> <mi arg='r'>R</mi> <mo>⟦</mo> <mi arg='x'>X</mi> <mo>⟧</mo> </mrow> </mrow> </math> eigh is equal to; the sum from 0 to infinity of; eigh sub n x to the n; is an element of, r power series over x
|
A=\sum_0^\infty a_n X^n \in R\lBrack X \rBrack | formal power series | ||
§ <math display='block'> <mrow> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mo>⁡</mo> <mi>𝜃</mi> </mrow> <mo>+</mo> <mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mo>⁡</mo> <mi>𝜃</mi> </mrow> <mo>=</mo> <mn>1</mn> </math> sine squared of theta, plus cosine squared of theta; is equal to 1
§ <math intent=':common' display='block'> sine squared of theta, plus cosine squared of theta; is equal to 1
§ <math intent=':literal' display='block'> sine super 2 end super of theta, plus, cosine super 2 end super of theta; is equal to 1
|
§ <math display='block'> <mrow> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mo intent='apply:silent'>⁡</mo> <mi intent='theta'>𝜃</mi> </mrow> <mo>+</mo> <mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mo intent='apply:silent'>⁡</mo> <mi intent='theta'>𝜃</mi> </mrow> <mo>=</mo> <mn>1</mn> </math> sine squared theta, plus cosine squared theta; is equal to 1
|
\sin^2\theta + \cos^2\theta=1 | sin squared plus cos squared | ||
Combinations and Permutations | |||||
§ <math display='block'> <mrow> <mo>(</mo> <mfrac linethickness='0pt'> <mi>n</mi> <mi>k</mi> </mfrac> <mo>)</mo> </mrow> </math> n choose k
§ <math intent=':common' display='block'> n choose k
§ <math intent=':literal' display='block'> open paren n over k, close paren
|
§ <math display='block'> <mrow intent='binomial($n,$k)'> <mo>(</mo> <mfrac linethickness='0pt'> <mi arg='n'>n</mi> <mi arg='k'>k</mi> </mfrac> <mo>)</mo> </mrow> </math> n choose k
§ <math display='block'> <mrow intent='binomial:infix($n,$k)'> <mo>(</mo> <mfrac linethickness='0pt'> <mi arg='n'>n</mi> <mi arg='k'>k</mi> </mfrac> <mo>)</mo> </mrow> </math> , n binomial k,
|
\binom{n}{k} | binom n k | ||
§ <math display='block'> <mmultiscripts> <mi>C</mi> <mi>k</mi> <mrow/> <mprescripts/> <mrow/> <mi>n</mi> </mmultiscripts> </math> n choose k
§ <math intent=':common' display='block'> n choose k
§ <math intent=':literal' display='block'> c pre superscript n, subscript k
|
§ <math display='block'> <mmultiscripts intent='binomial($n,$k)'> <mi>C</mi> <mi arg='k'>k</mi> <mrow/> <mprescripts/> <mrow/> <mi arg='n'>n</mi> </mmultiscripts> </math> n choose k
§ <math display='block'> <mmultiscripts intent='binomial:infix($n,$k)'> <mi>C</mi> <mi arg='k'>k</mi> <mrow/> <mprescripts/> <mrow/> <mi arg='n'>n</mi> </mmultiscripts> </math> , n binomial k,
|
{}^n C_k | binom sup n C sub k | ||
§ <math display='block'> <msubsup> <mi>C</mi> <mi>k</mi> <mi>n</mi> </msubsup> </math> c sub k, to the n-th
§ <math intent=':common' display='block'> c sub k, to the n-th
§ <math intent=':literal' display='block'> c sub k super n end super
|
§ <math display='block'> <msubsup intent='binomial($n,$k)'> <mi>C</mi> <mi arg='k'>k</mi> <mi arg='n'>n</mi> </msubsup> </math> n choose k
§ <math display='block'> <msubsup intent='binomial:infix($n,$k)'> <mi>C</mi> <mi arg='k'>k</mi> <mi arg='n'>n</mi> </msubsup> </math> , n binomial k,
|
C^n_k | binom C sup n sub k | ||
§ <math display='block'> <mrow> <mi>C</mi> <mo>(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </math> c of, open paren n comma, k, close paren
§ <math intent=':common' display='block'> c of, open paren n comma, k, close paren
§ <math intent=':literal' display='block'> c, open paren n comma, k, close paren
|
§ <math display='block'> <mrow intent='binomial($n,$k)'> <mi>C</mi> <mo>(</mo> <mi arg='n'>n</mi> <mo>,</mo> <mi arg='k'>k</mi> <mo>)</mo> </mrow> </math> n choose k
§ <math display='block'> <mrow intent='binomial:infix($n,$k)'> <mi>C</mi> <mo>(</mo> <mi arg='n'>n</mi> <mo>,</mo> <mi arg='k'>k</mi> <mo>)</mo> </mrow> </math> , n binomial k,
|
C(n,k) | binom C n k | ||
§ <math display='block'> <mmultiscripts> <mi>P</mi> <mi>k</mi> <mrow/> <mprescripts/> <mrow/> <mi>n</mi> </mmultiscripts> </math> k permutations of n
§ <math intent=':common' display='block'> k permutations of n
§ <math intent=':literal' display='block'> p pre superscript n, subscript k
|
§ <math display='block'> <mmultiscripts intent='permutation($n,$k)'> <mi>P</mi> <mi arg='k'>k</mi> <mrow/> <mprescripts/> <mrow/> <mi arg='n'>n</mi> </mmultiscripts> </math> permutation of, n comma k
§ <math display='block'> <mmultiscripts intent='permutation:prefix($n,$k)'> <mi>P</mi> <mi arg='k'>k</mi> <mrow/> <mprescripts/> <mrow/> <mi arg='n'>n</mi> </mmultiscripts> </math> permutation n k,
§ <math display='block'> <mmultiscripts intent='_permutation:prefix(_of,$k,_from,$n)'> <mi>P</mi> <mi arg='k'>k</mi> <mrow/> <mprescripts/> <mrow/> <mi arg='n'>n</mi> </mmultiscripts> </math> permutation of k from n,
|
{}^n P_k | permutations sup n P sub k | ||
§ <math display='block'> <msubsup> <mi>P</mi> <mi>k</mi> <mi>n</mi> </msubsup> </math> k permutations of n
§ <math intent=':common' display='block'> k permutations of n
§ <math intent=':literal' display='block'> p sub k super n end super
|
§ <math display='block'> <msubsup intent='P($n,$k)'> <mi>P</mi> <mi arg='k'>k</mi> <mi arg='n'>n</mi> </msubsup> </math> p of, n comma k
§ <math display='block'> <msubsup intent='permutation-symbol($n,$k)'> <mi>P</mi> <mi arg='k'>k</mi> <mi arg='n'>n</mi> </msubsup> </math> k permutations of n
§ <math display='block'> <msubsup intent='permutation:prefix($n,$k)'> <mi>P</mi> <mi arg='k'>k</mi> <mi arg='n'>n</mi> </msubsup> </math> permutation n k,
§ <math display='block'> <msubsup intent='_permutation:prefix(_of,$k,_from,$n)'> <mi>P</mi> <mi arg='k'>k</mi> <mi arg='n'>n</mi> </msubsup> </math> permutation of k from n,
|
P^n_k | permutations P sup n sub k | ||
§ <math display='block'> <mrow> <mi>P</mi> <mo>(</mo> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </math> p of, open paren n comma, k, close paren
§ <math intent=':common' display='block'> p of, open paren n comma, k, close paren
§ <math intent=':literal' display='block'> p, open paren n comma, k, close paren
|
§ <math display='block'> <mrow intent='permutation-symbol($n,$k)'> <mi>P</mi> <mo>(</mo> <mi arg='n'>n</mi> <mo>,</mo> <mi arg='k'>k</mi> <mo>)</mo> </mrow> </math> k permutations of n
§ <math display='block'> <mrow intent='permutation:prefix($n,$k)'> <mi>P</mi> <mo>(</mo> <mi arg='n'>n</mi> <mo>,</mo> <mi arg='k'>k</mi> <mo>)</mo> </mrow> </math> permutation n k,
§ <math display='block'> <mrow intent='_permutation:prefix(_of,$k,_from, $n)'> <mi>P</mi> <mo>(</mo> <mi arg='n'>n</mi> <mo>,</mo> <mi arg='k'>k</mi> <mo>)</mo> </mrow> </math> permutation of k from n,
|
P(n,k) | permutations P n k | ||
Infix | |||||
§ <math display='block'> <mrow> <mi>x</mi> <mo>⊂</mo> <mi>y</mi> </mrow> </math> x is a subset of y
§ <math intent=':common' display='block'> x is a subset of y
§ <math intent=':literal' display='block'> x is a subset of y
|
§ <math display='block'> <mrow> <mi>x</mi> <mo intent='subset'>⊂</mo> <mi>y</mi> </mrow> </math> x subset y
§ <math display='block'> <mrow intent='_is_a_subset_of:infix($x,$y)'> <mi arg='x'>x</mi> <mo>⊂</mo> <mi arg='y'>y</mi> </mrow> </math> , x is a subset of y,
|
x \subset y | subset | ||
§ <math display='block'> <mrow> <mi>x</mi> <mo intent='parallel'>‖</mo> <mi>y</mi> </mrow> </math> x parallel y
§ <math intent=':common' display='block'> x parallel y
§ <math intent=':literal' display='block'> x parallel y
|
§ <math display='block'> <mrow> <mi>x</mi> <mo intent='parallel'>‖</mo> <mi>y</mi> </mrow> </math> x parallel y
§ <math display='block'> <mrow> <mi>x</mi> <mo intent='_is_parallel_to'>‖</mo> <mi>y</mi> </mrow> </math> x is parallel to y
§ <math display='block'> <mrow intent='_($x,_is,$op,_to,$y)'> <mi arg='x'>x</mi> <mo arg='op' intent='parallel'>‖</mo> <mi arg='y'>y</mi> </mrow> </math> x is parallel to y
§ <math display='block'> <mrow intent='_:silent($x,_is,$op,_to,$y)'> <mi arg='x'>x</mi> <mo arg='op' intent='parallel'>‖</mo> <mi arg='y'>y</mi> </mrow> </math> x is parallel to y
|
x \parallel y | parallel | ||
Functions | |||||
§ <math display='block'> <mrow> <mi>A</mi> <mo>⁡</mo> <mrow> <mo>(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </math> eigh of, open paren n comma, m, close paren
§ <math intent=':common' display='block'> eigh of, open paren n comma, m, close paren
§ <math intent=':literal' display='block'> eigh of, open paren n comma, m, close paren
|
§ <math display='block'> <mrow intent='$A($n,$m)'> <mi arg='A' intent='Ackerman'>A</mi> <mo>⁡</mo> <mrow> <mo>(</mo> <mi arg='n'>n</mi> <mo>,</mo> <mi arg='m'>m</mi> <mo>)</mo> </mrow> </mrow> </math> Ackerman of, n comma m
§ <math display='block'> <mrow> <mi intent='Ackerman'>A</mi> <mo>⁡</mo> <mrow> <mo>(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </math> Ackerman of, open paren n comma, m, close paren
§ <math display='block'> <mrow> <mi intent='A:Ackerman'>A</mi> <mo>⁡</mo> <mrow> <mo>(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </math> eigh of, open paren n comma, m, close paren
|
A(m,n) | Ackerman or A | ||
Higher Order Functions | |||||
§ <math display='block'> <mrow> <msup> <mrow> <mo>(</mo> <mi>g</mi> <mo>∘</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>′</mo> </msup> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math> open paren, g composed with h, close paren prime; times x
§ <math intent=':common' display='block'> open paren, g composed with h, close paren prime; times x
§ <math intent=':literal' display='block'> open paren, g composed with h, close paren prime; open paren x close paren
|
§ <math display='block'> <mrow intent='$op3($x)'> <msup arg='op3' intent='$op2($composed)'> <mrow arg='composed' intent='$op1:infix($g,$h)'> <mo>(</mo> <mi arg='g'>g</mi> <mo arg='op1' intent='function-composition'>∘</mo> <mi arg='h'>h</mi> <mo>)</mo> </mrow> <mo arg='op2' intent='first-derivative'>′</mo> </msup> <mo>(</mo> <mi arg='x'>x</mi> <mo>)</mo> </mrow> </math> first derivative of; g function composition h, applied to x
|
(g∘h)′(x) | low (g∘h)′(x) | ||
§ <math display='block'> <mrow> <mo>(</mo> <mi>g</mi> <mo>∘</mo> <mi>h</mi> <mo>)</mo> <mo>′</mo> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math> open paren, g composed with h, close paren prime; times x
§ <math intent=':common' display='block'> open paren, g composed with h, close paren prime; times x
§ <math intent=':literal' display='block'> open paren, g composed with h, close paren prime; open paren x close paren
|
§ <math display='block'> <mrow intent='first-derivative(function-composition:infix(g,h))(x)'> <mo>(</mo> <mi>g</mi> <mo>∘</mo> <mi>h</mi> <mo>)</mo> <mo>′</mo> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math> first derivative of; g function composition h, applied to x
|
(g∘h)′(x) | high (g∘h)′(x) | ||
§ <math display='block'> <mrow> <msup> <mrow> <mo>(</mo> <mi>g</mi> <mo>∘</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>′</mo> </msup> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math> open paren, g composed with h, close paren prime; times x
§ <math intent=':common' display='block'> open paren, g composed with h, close paren prime; times x
§ <math intent=':literal' display='block'> open paren, g composed with h, close paren prime; open paren x close paren
|
§ <math display='block'> <mrow intent='apply($op3,$x)'> <msup arg='op3' intent='apply($op2,$composed)'> <mrow arg='composed' intent='apply:infix($op1,$g,$h)'><!-- ?--> <mo>(</mo> <mi arg='g'>g</mi> <mo arg='op1' intent='function-composition'>∘</mo> <mi arg='h'>h</mi> <mo>)</mo> </mrow> <mo arg='op2' intent='first-derivative'>′</mo> </msup> <mo>(</mo> <mi arg='x'>x</mi> <mo>)</mo> </mrow> </math> apply of, apply of, first derivative comma; function composition apply g apply h, comma x
|
(g∘h)′(x) | apply (g∘h)′(x) | ||
§ <math display='block'> <mrow> <msup> <mrow> <mo>(</mo> <mi>g</mi> <mo>∘</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>′</mo> </msup> <mo>⁡</mo> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math> open paren, g composed with h, close paren prime, of x
§ <math intent=':common' display='block'> open paren, g composed with h, close paren prime, of x
§ <math intent=':literal' display='block'> open paren, g composed with h, close paren prime of open paren x close paren
|
§ <math display='block'> <mrow> <msup intent='first-derivative($composed)'> <mrow arg='composed'> <mo>(</mo> <mi>g</mi> <mo intent='composed-with'>∘</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>′</mo> </msup> <mo>⁡</mo> <!-- apply function --> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math> first derivative of, open paren, g composed with h, close paren of x
|
(g∘h)′(x) | leaf (g∘h)′(x) | ||
§ <math display='block'> <mrow> <msup> <mi>f</mi> <mo>*</mo> </msup> <mo>⁡</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </math> f star, of p
§ <math intent=':common' display='block'> f star, of p
§ <math intent=':literal' display='block'> f star of open paren p close paren
|
§ <math display='block'> <mrow intent='convex-conjugate(f)(p)'> <msup> <mi>f</mi> <mo>*</mo> </msup> <mo>⁡</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </math> convex conjugate of, f applied to p
§ <math display='block'> <mrow intent='$fs($p)'> <msup arg='fs' intent='convex-conjugate($f)'> <mi arg='f'>f</mi> <mo>*</mo> </msup> <mo>⁡</mo> <mrow> <mo>(</mo> <mi arg='p'>p</mi> <mo>)</mo> </mrow> </mrow> </math> convex conjugate of, f applied to p
§ <math display='block'> <mrow> <msup intent=':decorated-function'> <mi>f</mi> <mo intent='convex-conjugate'>*</mo> </msup> <mo>⁡</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </math> f convex conjugate, of p
|
f^*(p) | hof convex conjugate | ||
Hints | |||||
§ <math display='block'> <mrow> <mo>🐇</mo> <mi>X</mi> </mrow> </math> 🐇 x
§ <math intent=':common' display='block'> 🐇 x
§ <math intent=':literal' display='block'> 🐇 x
|
§ <math display='block'> <mrow> <mo intent='my-function'>🐇</mo> <mi>X</mi> </mrow> </math> my function x
§ <math display='block'> <mrow> <mo intent='my-function:function'>🐇</mo> <mi>X</mi> </mrow> </math> my function x
§ <math display='block'> <mrow> <mo intent='my-function:silent'>🐇</mo> <mi>X</mi> </mrow> </math> x
|
🐇 X | intent on prefix mo | ||
§ <math display='block'> <mrow> <mo>🐇</mo> <mi>X</mi> </mrow> </math> 🐇 x
§ <math intent=':common' display='block'> 🐇 x
§ <math intent=':literal' display='block'> 🐇 x
|
§ <math display='block'> <mrow intent='my-function($X)'> <mo>🐇</mo> <mi arg='X'>X</mi> </mrow> </math> my function of, x
§ <math display='block'> <mrow intent='my-function:function($X)'> <mo>🐇</mo> <mi arg='X'>X</mi> </mrow> </math> my function of, x
§ <math display='block'> <mrow intent='my-function:prefix($X)'> <mo>🐇</mo> <mi arg='X'>X</mi> </mrow> </math> my function x,
§ <math display='block'> <mrow intent='my-function:postfix($X)'> <mo>🐇</mo> <mi arg='X'>X</mi> </mrow> </math> , x my function
§ <math display='block'> <mrow intent='my-function:silent( _rabbit_function_applied_to,$X)'> <mo>🐇</mo> <mi arg='X'>X</mi> </mrow> </math> rabbit function applied to x
|
🐇 X | intent on mrow of prefix mo | ||
§ <math display='block'> <mrow> <mi>x</mi> <mo>⨯</mo> <mi>y</mi> </mrow> </math> x cross product y
§ <math intent=':common' display='block'> x cross product y
§ <math intent=':literal' display='block'> x cross product y
|
§ <math display='block'> <mrow> <mi arg='x'>x</mi> <mo arg='prod' intent='cross-product'>⨯</mo> <mi arg='y'>y</mi> </mrow> </math> x cross product y
§ <math display='block'> <mrow intent='$prod($x,$y)'> <mi arg='x'>x</mi> <mo arg='prod' intent='cross-product'>⨯</mo> <mi arg='y'>y</mi> </mrow> </math> cross product
§ <math display='block'> <mrow intent='$prod:infix($x,$y)'> <mi arg='x'>x</mi> <mo arg='prod' intent='cross-product'>⨯</mo> <mi arg='y'>y</mi> </mrow> </math> cross product
§ <math display='block'> <mrow intent='$prod:function($x,$y)'> <mi arg='x'>x</mi> <mo arg='prod' intent='cross-product'>⨯</mo> <mi arg='y'>y</mi> </mrow> </math> cross product
§ <math display='block'> <mrow intent='$prod:silent( _vector_product, _of, $x, _with, $y)'> <mi arg='x'>x</mi> <mo arg='prod' intent='cross-product'>⨯</mo> <mi arg='y'>y</mi> </mrow> </math> cross product
|
x \vectimes y | vectimes hints | ||
§ <math display='block'> <mrow> <mi>x</mi> <mo>⊞</mo> <mi>y</mi> </mrow> </math> x squared plus y
§ <math intent=':common' display='block'> x squared plus y
§ <math intent=':literal' display='block'> x squared plus y
|
§ <math display='block'> <mrow intent='foo:infix($x,$y)'> <mi arg='x'>x</mi> <mo>⊞</mo> <mi arg='y'>y</mi> </mrow> </math> , x foo y,
§ <math display='block'> <mrow> <mi>x</mi> <mo intent='foo'>⊞</mo> <mi>y</mi> </mrow> </math> x foo y
|
x \boxplus y | x foo/boxplus y | ||
Delimiters | |||||
§ <math display='block'> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> </math> the absolute value of x,
§ <math intent=':common' display='block'> the absolute value of x,
§ <math intent=':literal' display='block'> vertical line x vertical line
|
§ <math display='block'> <mrow intent='absolute-value($x)'> <mo>|</mo> <mi arg='x'>x</mi> <mo>|</mo> </mrow> </math> the absolute value of x,
|
\lvert x\rvert | vert x abs | ||
§ <math display='block'> <msub> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mn>2</mn> </msub> </math> the absolute value of x, sub 2
§ <math intent=':common' display='block'> the absolute value of x, sub 2
§ <math intent=':literal' display='block'> vertical line x vertical line sub 2
|
§ <math display='block'> <msub intent='l2-norm($x)'> <mrow> <mo>|</mo> <mi arg='x'>x</mi> <mo>|</mo> </mrow> <mn>2</mn> </msub> </math> l2 norm of, x
|
\lvert x\rvert_2 | l2 norm x | ||
§ <math display='block'> <mrow> <mo>|</mo> <mi>M</mi> <mo>|</mo> </mrow> </math> the determinant of m
§ <math intent=':common' display='block'> the determinant of m
§ <math intent=':literal' display='block'> vertical line m vertical line
|
§ <math display='block'> <mrow intent='determinant($M)'> <mo>|</mo> <mi arg='M'>M</mi> <mo>|</mo> </mrow> </math> the determinant of m
|
\lvert M\rvert | vert M determinant | ||
§ <math display='block'> <mrow> <mo>|</mo> <mtable> <mtr> <mtd><mi>a</mi></mtd> <mtd><mi>b</mi></mtd> </mtr> <mtr> <mtd><mi>c</mi></mtd> <mtd><mi>d</mi></mtd> </mtr> </mtable> <mo>|</mo> </mrow> </math> the 2 by 2 determinant; row 1; eigh, b; row 2; c, d; end determinant
§ <math intent=':common' display='block'> the 2 by 2 determinant; row 1; eigh, b; row 2; c, d; end determinant
§ <math intent=':literal' display='block'> vertical line; table with 2 rows and 2 columns; row 1;
column 1; eigh, column 2; b; row 2; column 1; c, column 2; d; vertical line |
§ <math display='block'> <mrow intent='determinant($M)'> <mo>|</mo> <mtable arg='M' intent=':matrix'> <mtr> <mtd><mi>a</mi></mtd> <mtd><mi>b</mi></mtd> </mtr> <mtr> <mtd><mi>c</mi></mtd> <mtd><mi>d</mi></mtd> </mtr> </mtable> <mo>|</mo> </mrow> </math> the determinant of the 2 by 2 matrix; row 1; eigh, b; row 2; c, d; end matrix end determinant
§ <math display='block'> <mrow intent='$M'> <mo>|</mo> <mtable arg='M' intent=':determinant'> <mtr> <mtd><mi>a</mi></mtd> <mtd><mi>b</mi></mtd> </mtr> <mtr> <mtd><mi>c</mi></mtd> <mtd><mi>d</mi></mtd> </mtr> </mtable> <mo>|</mo> </mrow> </math> the 2 by 2 determinant; row 1; eigh, b; row 2; c, d; end determinant
|
\begin{vmatrix}a&b\\c&d\end{vmatrix} | vert abcd determinant | ||
§ <math display='block'> <mrow> <mo>‖</mo> <mi>x</mi> <mo>‖</mo> </mrow> </math> magnitude of, x
§ <math intent=':common' display='block'> magnitude of, x
§ <math intent=':literal' display='block'> double vertical line x double vertical line
|
§ <math display='block'> <mrow intent='magnitude($x)'> <mo>‖</mo> <mi arg='x'>x</mi> <mo>‖</mo> </mrow> </math> magnitude of, x
|
\lVert x\rVert | Vert x magnitude | ||
§ <math display='block'> <mrow> <mo>]</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>[</mo> </mrow> </math> close bracket, x comma; y open bracket
§ <math intent=':common' display='block'> close bracket, x comma; y open bracket
§ <math intent=':literal' display='block'> close bracket, x comma; y open bracket
|
§ <math display='block'> <mrow intent='open-interval($x,$y)'> <mo>]</mo> <mi arg='x'>x</mi> <mo>,</mo> <mi arg='y'>y</mi> <mo>[</mo> </mrow> </math> the open interval from x to y
|
\mathopen] x,y\mathclose[\rVert | open-open inverted bracket | ||
§ <math display='block'> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </math> open paren x comma, y, close paren
§ <math intent=':common' display='block'> open paren x comma, y, close paren
§ <math intent=':literal' display='block'> open paren x comma, y, close paren
|
§ <math display='block'> <mrow intent='open-interval($x,$y)'> <mo>(</mo> <mi arg='x'>x</mi> <mo>,</mo> <mi arg='y'>y</mi> <mo>)</mo> </mrow> </math> the open interval from x to y
|
(x,y) | open-open | ||
§ <math display='block'> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>]</mo> </mrow> </math> the open closed interval from x to y
§ <math intent=':common' display='block'> the open closed interval from x to y
§ <math intent=':literal' display='block'> open paren x comma, y, close bracket
|
§ <math display='block'> <mrow intent='open-closed-interval($x,$y)'> <mo>(</mo> <mi arg='x'>x</mi> <mo>,</mo> <mi arg='y'>y</mi> <mo>]</mo> </mrow> </math> the open closed interval from x to y
|
(x,y] | open-closed | ||
§ <math display='block'> <mrow> <mo>[</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </math> the closed open interval from x to y
§ <math intent=':common' display='block'> the closed open interval from x to y
§ <math intent=':literal' display='block'> open bracket, x comma, y, close paren
|
§ <math display='block'> <mrow intent='closed-open-interval($x,$y)'> <mo>[</mo> <mi arg='x'>x</mi> <mo>,</mo> <mi arg='y'>y</mi> <mo>)</mo> </mrow> </math> the closed open interval from x to y
|
[x,y) | closed-open | ||
§ <math display='block'> <mrow> <mo>[</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>]</mo> </mrow> </math> the closed interval from x to y
§ <math intent=':common' display='block'> the closed interval from x to y
§ <math intent=':literal' display='block'> open bracket, x comma, y, close bracket
|
§ <math display='block'> <mrow intent='closed-interval($x,$y)'> <mo>[</mo> <mi arg='x'>x</mi> <mo>,</mo> <mi arg='y'>y</mi> <mo>]</mo> </mrow> </math> the closed interval from x to y
§ <math display='block'> <mrow intent='closed-interval:prefix($x,$y)'> <mo>[</mo> <mi arg='x'>x</mi> <mo>,</mo> <mi arg='y'>y</mi> <mo>]</mo> </mrow> </math> closed interval x y,
|
[x,y] | closed-closed | ||
§ <math display='block'> <mrow> <mo>(</mo> <mi>x</mi> <mo> </mo> <mi>y</mi> <mo> </mo> <mi>c</mi> <mo> </mo> <mi>d</mi> <mo>)</mo> </mrow> </math> open paren, x y c d, close paren
§ <math intent=':common' display='block'> open paren, x y c d, close paren
§ <math intent=':literal' display='block'> open paren, x y c d, close paren
|
§ <math display='block'> <mrow intent='vector($x,$y,$c,$d)'> <mo>(</mo> <mi arg='x'>x</mi> <mo> </mo> <mi arg='y'>y</mi> <mo> </mo> <mi arg='c'>c</mi> <mo> </mo> <mi arg='d'>d</mi> <mo>)</mo> </mrow> </math> vector of, x comma y comma c comma d
§ <math display='block'> <mrow intent='cycle($x,$y,$c,$d)'> <mo>(</mo> <mi arg='x'>x</mi> <mo> </mo> <mi arg='y'>y</mi> <mo> </mo> <mi arg='c'>c</mi> <mo> </mo> <mi arg='d'>d</mi> <mo>)</mo> </mrow> </math> cycle of, x comma y comma c comma d
§ <math display='block'> <mrow intent='vector:prefix($x,$y,$c,$d)'> <mo>(</mo> <mi arg='x'>x</mi> <mo> </mo> <mi arg='y'>y</mi> <mo> </mo> <mi arg='c'>c</mi> <mo> </mo> <mi arg='d'>d</mi> <mo>)</mo> </mrow> </math> vector x y c d,
§ <math display='block'> <mrow intent='cycle:prefix($x,$y,$c,$d)'> <mo>(</mo> <mi arg='x'>x</mi> <mo> </mo> <mi arg='y'>y</mi> <mo> </mo> <mi arg='c'>c</mi> <mo> </mo> <mi arg='d'>d</mi> <mo>)</mo> </mrow> </math> cycle x y c d,
|
(a\,b\,c\,d) | cycle thin space | ||
Tables | |||||
§ <math display='block'> <mrow> <mo>[</mo> <mtable> <mtr> <mtd><mi>a</mi></mtd> <mtd><mi>b</mi></mtd> </mtr> <mtr> <mtd><mi>x</mi></mtd> <mtd><mi>y</mi></mtd> </mtr> </mtable> <mo>]</mo> </mrow> </math> the 2 by 2 matrix; row 1; eigh, b; row 2; x, y; end matrix
§ <math intent=':common' display='block'> the 2 by 2 matrix; row 1; eigh, b; row 2; x, y; end matrix
§ <math intent=':literal' display='block'> open bracket; table with 2 rows and 2 columns; row 1;
column 1; eigh, column 2; b; row 2; column 1; x, column 2; y; close bracket |
§ <math display='block'> <mrow intent='$m'> <mo>[</mo> <mtable arg='m' intent=':matrix'> <mtr> <mtd><mi>a</mi></mtd> <mtd><mi>b</mi></mtd> </mtr> <mtr> <mtd><mi>x</mi></mtd> <mtd><mi>y</mi></mtd> </mtr> </mtable> <mo>]</mo> </mrow> </math> the 2 by 2 matrix; row 1; eigh, b; row 2; x, y; end matrix
§ <math display='block'> <mrow intent='$m'> <mo>[</mo> <mtable arg='m' intent=':array'> <mtr> <mtd><mi>a</mi></mtd> <mtd><mi>b</mi></mtd> </mtr> <mtr> <mtd><mi>x</mi></mtd> <mtd><mi>y</mi></mtd> </mtr> </mtable> <mo>]</mo> </mrow> </math> array of, row 1;
column 1; eigh, column 2; b; comma, row 2; column 1; x, column 2; y; |
\begin{bmatrix} a&b\\ x&y \end{bmatrix} | bmatrix | ||
§ <math display='block'> <mrow> <mo>(</mo> <mtable> <mtr> <mtd><mi>a</mi></mtd> <mtd><mi>b</mi></mtd> </mtr> <mtr> <mtd><mi>x</mi></mtd> <mtd><mi>y</mi></mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math> the 2 by 2 matrix; row 1; eigh, b; row 2; x, y; end matrix
§ <math intent=':common' display='block'> the 2 by 2 matrix; row 1; eigh, b; row 2; x, y; end matrix
§ <math intent=':literal' display='block'> open paren; table with 2 rows and 2 columns; row 1;
column 1; eigh, column 2; b; row 2; column 1; x, column 2; y; close paren |
§ <math display='block'> <mrow intent='$m'> <mo>(</mo> <mtable arg='m' intent=':matrix'> <mtr> <mtd><mi>a</mi></mtd> <mtd><mi>b</mi></mtd> </mtr> <mtr> <mtd><mi>x</mi></mtd> <mtd><mi>y</mi></mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math> the 2 by 2 matrix; row 1; eigh, b; row 2; x, y; end matrix
|
\begin{pmatrix} a&b\\ x&y \end{pmatrix} | pmatrix | ||
§ <math display='block'> <mrow> <mo>{</mo> <mtable> <mtr> <mtd> <mi>x</mi> <mo>+</mo> <mi>y</mi> </mtd> <mtd><mo>=</mo></mtd> <mtd><mn>2</mn></mtd> </mtr> <mtr> <mtd> <mi>x</mi> <mo>−</mo> <mi>y</mi> </mtd> <mtd><mo>=</mo></mtd> <mtd><mn>0</mn></mtd> </mtr> </mtable> </mrow> </math> 2 cases,
case 1; x plus y, is equal to 2; case 2; x minus y, is equal to 0; § <math intent=':common' display='block'> 2 cases,
case 1; x plus y, is equal to 2; case 2; x minus y, is equal to 0; § <math intent=':literal' display='block'> open brace; table with 2 rows and 3 columns; row 1;
column 1; x plus y, column 2; is equal to, column 3; 2; row 2; column 1; x minus y, column 2; is equal to, column 3; 0; |
§ <math display='block'> <mrow intent='$m'> <mo>{</mo> <mtable arg='m' intent=':system-of-equations'> <mtr> <mtd> <mi>x</mi> <mo>+</mo> <mi>y</mi> </mtd> <mtd><mo>=</mo></mtd> <mtd><mn>2</mn></mtd> </mtr> <mtr> <mtd> <mi>x</mi> <mo>−</mo> <mi>y</mi> </mtd> <mtd><mo>=</mo></mtd> <mtd><mn>0</mn></mtd> </mtr> </mtable> </mrow> </math> 2 cases,
case 1; x plus y, is equal to 2; case 2; x minus y, is equal to 0; |
\left\{\begin{aligned} x+y &= 2 \\ x-y &=0 \end{aligned}\right. | braced system of equations | ||
§ <math display='block'> <mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>{</mo> <mtable columnalign="right left" columnspacing="0" rowspacing=".2em"> <mtr> <mtd><mo>−</mo><mi>x</mi></mtd> <mtd><mtext> if </mtext></mtd> <mtd><mi>x</mi><mo><</mo><mn>0</mn></mtd> </mtr> <mtr> <mtd><mi>x</mi></mtd> <mtd><mtext> if </mtext></mtd> <mtd><mi>x</mi><mo>≥</mo><mn>0</mn></mtd> </mtr> </mtable> </mrow> </math> f of x is equal to; 2 cases,
case 1; negative x if x is less than 0; case 2; x if , x is greater than or equal to 0; § <math intent=':common' display='block'> f of x is equal to; 2 cases,
case 1; negative x if x is less than 0; case 2; x if , x is greater than or equal to 0; § <math intent=':literal' display='block'> f open paren x close paren; is equal to; open brace; table with 2 rows and 3 columns; row 1;
column 1; minus x, column 2; if , column 3; x is less than 0; row 2; column 1; x, column 2; if , column 3; x is greater than or equal to 0; |
§ <math display='block'> <mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo intent=":silent">{</mo> <mtable intent=":piecewise" columnalign="right left" columnspacing="0" rowspacing=".2em"> <mtr> <mtd><mo>−</mo><mi>x</mi></mtd> <mtd><mtext> if </mtext></mtd> <mtd><mi>x</mi><mo><</mo><mn>0</mn></mtd> </mtr> <mtr> <mtd><mi>x</mi></mtd> <mtd><mtext> if </mtext></mtd> <mtd><mi>x</mi><mo>≥</mo><mn>0</mn></mtd> </mtr> </mtable> </mrow> </math> f of x is equal to; 2 cases,
case 1; negative x if x is less than 0; case 2; x if x is greater than or equal to 0; |
f(x)=\begin{cases}... | piecewise function definition | ||
§ <math display='block'> <mtable> <mtr> <mtd columnalign='right'> <mn>2</mn> <mo>⁢<!--InvisibleTimes--></mo> <mi>x</mi> </mtd> <mtd columnalign='center'> <mo>=</mo> </mtd> <mtd columnalign='left'> <mn>1</mn> </mtd> </mtr> <mtr> <mtd columnalign='right'> <mi>y</mi> </mtd> <mtd columnalign='center'> <mo>></mo> </mtd> <mtd columnalign='left'> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mtd> </mtr> </mtable> </math> 2 equations,
equation 1; 2 x is equal to 1; equation 2; y is greater than, x minus 3; § <math intent=':common' display='block'> 2 equations,
equation 1; 2 x is equal to 1; equation 2; y is greater than, x minus 3; § <math intent=':literal' display='block'> table with 2 rows and 3 columns; row 1;
column 1; 2 x, column 2; is equal to, column 3; 1; row 2; column 1; y, column 2; is greater than, column 3; x minus 3; |
§ <math display='block'> <mtable intent=':system-of-equations'> <mtr> <mtd columnalign='right'> <mn>2</mn> <mo>⁢<!--InvisibleTimes--></mo> <mi>x</mi> </mtd> <mtd columnalign='center'> <mo>=</mo> </mtd> <mtd columnalign='left'> <mn>1</mn> </mtd> </mtr> <mtr> <mtd columnalign='right'> <mi>y</mi> </mtd> <mtd columnalign='center'> <mo>></mo> </mtd> <mtd columnalign='left'> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mtd> </mtr> </mtable> </math> 2 equations,
equation 1; 2 x is equal to 1; equation 2; y is greater than, x minus 3; |
\begin{align}... | align 1 | ||
§ <math display='block'> <mtable> <mtr> <mtd columnalign='right'> <mi>a</mi> </mtd> <mtd columnalign='center'> <mo>=</mo> </mtd> <mtd columnalign='left'> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>−</mo> <mi>d</mi> </mtd> </mtr> <mtr> <mtd columnalign='right'></mtd> <mtd columnalign='center'></mtd> <mtd columnalign='left'> <mo form='infix'>+</mo> <mi>e</mi> <mo>−</mo> <mi>f</mi> </mtd> </mtr> </mtable> </math> 2 equations,
equation 1; eigh is equal to, b plus c minus d; equation 2; plus e minus f; § <math intent=':common' display='block'> 2 equations,
equation 1; eigh is equal to, b plus c minus d; equation 2; plus e minus f; § <math intent=':literal' display='block'> table with 2 rows and 3 columns; row 1;
column 1; eigh, column 2; is equal to, column 3; b plus c minus d; row 2; column 1; empty, column 2; empty, column 3; plus e minus f; |
§ <math display='block'> <mtable intent='equation:prefix($e1,$e1x)'> <mtr arg='e1'> <mtd columnalign='right'> <mi>a</mi> </mtd> <mtd columnalign='center'> <mo>=</mo> </mtd> <mtd intent='_($lhs)' columnalign='left'> <mrow arg='lhs'> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>−</mo> <mi>d</mi> </mrow> </mtd> </mtr> <mtr arg='e1x'> <mtd intent='_' columnalign='right'></mtd> <mtd intent='_' columnalign='center'></mtd> <mtd arg='rhs' columnalign='left'> <mo form='infix'>+</mo> <mi>e</mi> <mo>−</mo> <mi>f</mi> </mtd> </mtr> </mtable> </math> equation row 1;
column 1; eigh, column 2; is equal to, b plus c minus d row 2; column 3; plus e minus f; § <math display='block'> <mtable intent=':system-of-equations'> <mtr> <mtd columnalign='right'> <mi>a</mi> </mtd> <mtd columnalign='center'> <mo>=</mo> </mtd> <mtd columnalign='left'> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>−</mo> <mi>d</mi> </mtd> </mtr> <mtr intent=':continued-equation'> <mtd columnalign='right'></mtd> <mtd columnalign='center'></mtd> <mtd columnalign='left'> <mo form='infix'>+</mo> <mi>e</mi> <mo>−</mo> <mi>f</mi> </mtd> </mtr> </mtable> </math> 2 equations,
equation 1; eigh is equal to, b plus c minus d; equation 2; plus e minus f; |
\begin{aligned}... wrapped | alignment with wrapped line | ||
§ <math display='block'> <mrow> <mtable> <mtr> <mtd> <msup> <mrow> <mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>)</mo> </mrow> <mn>2</mn> </msup> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <msup><mi>a</mi><mn>2</mn></msup> <mo>+</mo> <mrow> <mn>2</mn> <mo>⁢<!--InvisibleTimes--></mo> <mi>a</mi> <mo>⁢<!--InvisibleTimes--></mo> <mi>b</mi> </mrow> <mo>+</mo> <msup><mi>b</mi><mn>2</mn></msup> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mo>⩽</mo> </mtd> <mtd> <mrow> <mn>2</mn> <mo>⁢<!--InvisibleTimes--></mo> <mi>a</mi> <mo>⁢<!--InvisibleTimes--></mo> <mi>b</mi> </mrow> <mo>+</mo> <msup><mi>b</mi><mn>2</mn></msup> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>b</mi> <mo>⁢<!--InvisibleTimes--></mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>⁢<!--InvisibleTimes--></mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </math> 3 equations,
equation 1; open paren eigh plus b, close paren squared; is equal to; eigh squared plus 2 eigh b, plus b squared; equation 2; less than or slanted equal to; 2 eigh b, plus b squared; equation 3; is equal to; b times, open paren, 2 eigh plus b, close paren; § <math intent=':common' display='block'> 3 equations,
equation 1; open paren eigh plus b, close paren squared; is equal to; eigh squared plus 2 eigh b, plus b squared; equation 2; less than or slanted equal to; 2 eigh b, plus b squared; equation 3; is equal to; b times, open paren, 2 eigh plus b, close paren; § <math intent=':literal' display='block'> table with 3 rows and 3 columns; row 1;
column 1; open paren eigh plus b, close paren super 2 end super, column 2; is equal to, column 3; eigh super 2 end super, plus 2 eigh b, plus b super 2 end super; row 2; column 1; empty, column 2; less than or slanted equal to, column 3; 2 eigh b, plus b super 2 end super; row 3; column 1; empty, column 2; is equal to, column 3; b, open paren, 2 eigh plus b, close paren; |
§ <math display='block'> <mrow intent='derivation($m)'> <mtable arg='m' intent=':lines'> <mtr> <mtd> <msup> <mrow> <mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>)</mo> </mrow> <mn>2</mn> </msup> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <msup><mi>a</mi><mn>2</mn></msup> <mo>+</mo> <mrow> <mn>2</mn> <mo>⁢<!--InvisibleTimes--></mo> <mi>a</mi> <mo>⁢<!--InvisibleTimes--></mo> <mi>b</mi> </mrow> <mo>+</mo> <msup><mi>b</mi><mn>2</mn></msup> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mo>⩽</mo> </mtd> <mtd> <mrow> <mn>2</mn> <mo>⁢<!--InvisibleTimes--></mo> <mi>a</mi> <mo>⁢<!--InvisibleTimes--></mo> <mi>b</mi> </mrow> <mo>+</mo> <msup><mi>b</mi><mn>2</mn></msup> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mi>b</mi> <mo>⁢<!--InvisibleTimes--></mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>⁢<!--InvisibleTimes--></mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </math> derivation of, 3 lines,
line 1; open paren eigh plus b, close paren squared, is equal to, eigh squared plus 2 eigh b, plus b squared; line 2; less than or slanted equal to, 2 eigh b, plus b squared; line 3; is equal to, b times, open paren, 2 eigh plus b, close paren; |
\begin{align}... | aligned derivation | ||
§ <math display="block"> <mrow> <mo>(</mo> <mtable> <mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr> <mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr> </mtable> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mtable> <mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr> <mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr> </mtable> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mtable> <mtr><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>3</mn></mtd><mtd><mn>7</mn></mtd></mtr> </mtable> <mo>)</mo> </mrow> </math> the 2 by 2 matrix; row 1; 1, 2; row 2; 3, 4; end matrix; times, the 2 by 2 matrix; row 1; 1, 1; row 2; 0, 1; end matrix; is equal to; the 2 by 2 matrix; row 1; 1, 3; row 2; 3, 7; end matrix
§ <math intent=':common' display="block"> the 2 by 2 matrix; row 1; 1, 2; row 2; 3, 4; end matrix; times, the 2 by 2 matrix; row 1; 1, 1; row 2; 0, 1; end matrix; is equal to; the 2 by 2 matrix; row 1; 1, 3; row 2; 3, 7; end matrix
§ <math intent=':literal' display="block"> open paren; table with 2 rows and 2 columns; row 1;
column 1; 1, column 2; 2; row 2; column 1; 3, column 2; 4; close paren; times; open paren; table with 2 rows and 2 columns; row 1; column 1; 1, column 2; 1; row 2; column 1; 0, column 2; 1; close paren; is equal to; open paren; table with 2 rows and 2 columns; row 1; column 1; 1, column 2; 3; row 2; column 1; 3, column 2; 7; close paren |
§ <math display="block"> <mrow> <mo>(</mo> <mtable> <mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr> <mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr> </mtable> <mo>)</mo> </mrow> <mo intent="matrix_product">⁢</mo> <mrow> <mo>(</mo> <mtable> <mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr> <mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr> </mtable> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mtable> <mtr><mtd><mn>1</mn></mtd><mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>3</mn></mtd><mtd><mn>7</mn></mtd></mtr> </mtable> <mo>)</mo> </mrow> </math> the 2 by 2 matrix; row 1; 1, 2; row 2; 3, 4; end matrix; matrix product; the 2 by 2 matrix; row 1; 1, 1; row 2; 0, 1; end matrix; is equal to; the 2 by 2 matrix; row 1; 1, 3; row 2; 3, 7; end matrix
|
\begin{pmatrix}1&2\\3&4\end{pmatrix} \begin{pmatrix}1&1\\0&1\end{pmatrix} = \begin{pmatrix}1&3\\3&7\end{pmatrix} | m*m=m | ||
Calculus | |||||
§ <math display='block'> <mover> <mi>x</mi> <mo>˙</mo> </mover> </math> x dot,
§ <math intent=':common' display='block'> x dot,
§ <math intent=':literal' display='block'> x dot
|
§ <math display='block'> <mover intent='derivative($x,1)'> <mi arg='x'>x</mi> <mo>˙</mo> </mover> </math> derivative of, x comma 1
§ <math display='block'> <mover intent='derivative:function($x)'> <mi arg='x'>x</mi> <mo intent='derivative'>˙</mo> </mover> </math> derivative of, x
§ <math display='block'> <mover intent='dot:postfix($x)'> <mi arg='x'>x</mi> <mo intent='derivative'>˙</mo> </mover> </math> , x dot
|
\dot{x} | dot x | ||
§ <math display='block'> <mover> <mi>x</mi> <mo>¨</mo> </mover> </math> x double dot,
§ <math intent=':common' display='block'> x double dot,
§ <math intent=':literal' display='block'> x double dot
|
§ <math display='block'> <mover intent='derivative($x,2)'> <mi arg='x'>x</mi> <mo>¨</mo> </mover> </math> derivative of, x comma 2
§ <math display='block'> <mover intent='second-derivative:function($x)'> <mi arg='x'>x</mi> <mo intent='second-derivative'>¨</mo> </mover> </math> second derivative of, x
§ <math display='block'> <mover intent='dot-dot:postfix($x)'> <mi arg='x'>x</mi> <mo intent='second-derivative'>¨</mo> </mover> </math> , x dot dot
|
\ddot{x} | ddot x | ||
§ <math display='block'> <mfrac> <mrow><mi>d</mi><mi>x</mi></mrow> <mrow><mi>d</mi><mi>t</mi></mrow> </mfrac> </math> fraction, d x, over, d t, end fraction;
§ <math intent=':common' display='block'> fraction, d x, over, d t, end fraction;
§ <math intent=':literal' display='block'> start, d x, over, d t, end over;
|
§ <math display='block'> <mfrac intent='derivative($x,1,$t)'> <mrow><mi>d</mi><mi arg='x'>x</mi></mrow> <mrow><mi>d</mi><mi arg='t'>t</mi></mrow> </mfrac> </math> derivative of, x comma 1 comma t
§ <math display='block'> <mfrac intent='derivative:prefix( _of,$x,_with_respect_to,$t)'> <mrow><mi>d</mi><mi arg='x'>x</mi></mrow> <mrow><mi>d</mi><mi arg='t'>t</mi></mrow> </mfrac> </math> derivative of x with respect to t,
§ <math display='block'> <mfrac intent='derivative:silent( _d,$x,_by,_d,$t)'> <mrow><mi>d</mi><mi arg='x'>x</mi></mrow> <mrow><mi>d</mi><mi arg='t'>t</mi></mrow> </mfrac> </math> d x by d t
|
\frac{dx}{dt} | dx by dt | ||
§ <math display='block'> <mrow> <mfrac> <mrow><mi>d</mi></mrow> <mrow><mi>d</mi><mi>t</mi></mrow> </mfrac> <mrow> <mi>f</mi> <mo>⁡</mo> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math> fraction, d over, d t, end fraction; f of t
§ <math intent=':common' display='block'> fraction, d over, d t, end fraction; f of t
§ <math intent=':literal' display='block'> start, d over, d t, end over; f of open paren t close paren
|
§ <math display='block'> <mrow intent='derivative($ft,1,$t)'> <mfrac> <mrow><mi>d</mi></mrow> <mrow><mi>d</mi><mi arg='t'>t</mi></mrow> </mfrac> <mrow arg='ft'> <mi>f</mi> <mo>⁡</mo> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math> derivative of, f of t comma 1 comma t
§ <math display='block'> <mrow intent='derivative:prefix( _of,$ft,_with_respect_to,$t)'> <mfrac> <mrow><mi>d</mi></mrow> <mrow><mi>d</mi><mi arg='t'>t</mi></mrow> </mfrac> <mrow arg='ft'> <mi>f</mi> <mo>⁡</mo> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math> derivative of f of t with respect to t,
|
\frac{d}{dt}f(t) | d by dt f of t | ||
§ <math display='block'> <mfrac> <mrow> <msup> <mi>d</mi><mn>2</mn> </msup> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> </math> fraction, d squared x, over, d t squared, end fraction;
§ <math intent=':common' display='block'> fraction, d squared x, over, d t squared, end fraction;
§ <math intent=':literal' display='block'> start, d super 2 end super x, over, d t super 2 end super, end over;
|
§ <math display='block'> <mfrac intent='derivative($x,2,$t)'> <mrow> <msup> <mi>d</mi><mn>2</mn> </msup> <mi arg='x'>x</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi arg='t'>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> </math> derivative of, x comma 2 comma t
§ <math display='block'> <mfrac intent='second-derivative:prefix( _of,$x,_with_respect_to,$t)'> <mrow> <msup> <mi>d</mi><mn>2</mn> </msup> <mi arg='x'>x</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi arg='t'>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> </math> second derivative of x with respect to t,
§ <math display='block'> <mfrac intent='derivative:silent( _d,_2,$x,_by,_d,$t,_squared)'> <mrow> <msup> <mi>d</mi><mn>2</mn> </msup> <mi arg='x'>x</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi arg='t'>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> </math> d 2 x by d t squared
|
\frac{d^2x}{dt^2} | dx2 by dt2 | ||
§ <math display='block'> <mfrac> <mrow> <msup> <mo>∂</mo><mn>2</mn> </msup> <mi>f</mi> </mrow> <mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mrow> </mfrac> </math> fraction, partial derivative squared f, over, partial derivative x, partial derivative y, end fraction;
§ <math intent=':common' display='block'> fraction, partial derivative squared f, over, partial derivative x, partial derivative y, end fraction;
§ <math intent=':literal' display='block'> start, partial derivative super 2 end super f, over, partial derivative x, partial derivative y, end over;
|
§ <math display='block'> <mfrac intent='partial-second-derivative( $f,$x,$y)'> <mrow> <msup> <mo>∂</mo><mn>2</mn> </msup> <mi arg='f'>f</mi> </mrow> <mrow> <mrow> <mo>∂</mo> <mi arg='x'>x</mi> </mrow> <mrow> <mo>∂</mo> <mi arg='y'>y</mi> </mrow> </mrow> </mfrac> </math> partial second derivative of, f comma x comma y
§ <math display='block'> <mfrac intent='partial-second-derivative:prefix( _of,$f,_with_respect_to,$x,_and,$y)'> <mrow> <msup> <mo>∂</mo><mn>2</mn> </msup> <mi arg='f'>f</mi> </mrow> <mrow> <mrow> <mo>∂</mo> <mi arg='x'>x</mi> </mrow> <mrow> <mo>∂</mo> <mi arg='y'>y</mi> </mrow> </mrow> </mfrac> </math> partial second derivative of f with respect to x and y,
|
\frac{\partial^2 f}{\partial x \partial y} | partial df by dx dy | ||
§ <math display='block'> <mo>∫</mo> <mrow> <mi>f</mi> <mo>⁡</mo> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </math> the integral of f of x d x
§ <math intent=':common' display='block'> the integral of f of x d x
§ <math intent=':literal' display='block'> the integral of f of open paren x close paren; d x
|
§ <math display='block'> <mo>∫</mo> <mrow> <mi>f</mi> <mo>⁡</mo> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </math> the integral of f of x d x
|
\int f(x) dx | int f(x) dx | ||
§ <math display='block'> <mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </msubsup> <msup><mi>x</mi><mn>2</mn></msup> <mi>d</mi> <mi>x</mi> </mrow> </math> the integral from 0 to 1 of, x squared d x
§ <math intent=':common' display='block'> the integral from 0 to 1 of, x squared d x
§ <math intent=':literal' display='block'> integral sub 0 super 1 end super; x super 2 end super d x
|
§ <math display='block'> <mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </msubsup> <msup><mi>x</mi><mn>2</mn></msup> <mi>d</mi> <mi>x</mi> </mrow> </math> the integral from 0 to 1 of, x squared d x
|
\int_0^1 x^2 dx | defint 0 to 1 x squared | ||
§ <math display='block' mathbackground='yellow'> <mrow> <mo>[</mo> <mn>2</mn> <mo>⁢</mo> <mi>x</mi> <msubsup> <mo>]</mo> <mn>0</mn> <mn>1</mn> </msubsup> </mrow> </math> open bracket evaluated at 1 minus the same expression evaluated at 0
§ <math intent=':common' display='block' mathbackground='yellow'> open bracket evaluated at 1 minus the same expression evaluated at 0
§ <math intent=':literal' display='block' mathbackground='yellow'> open bracket 2 x close bracket sub 0 super 1 end super
|
§ <math display='block'> <mrow> <mo>[</mo> <mn>2</mn> <mo>⁢</mo> <mi>x</mi> <msubsup> <mo>]</mo> <mn>0</mn> <mn>1</mn> </msubsup> </mrow> </math> open bracket evaluated at 1 minus the same expression evaluated at 0
|
[2x]_0^1 | evaluate 2x at 1 and 0 bracket | ||
§ <math display='block' mathbackground='yellow'> <msubsup> <mrow> <mo>[</mo> <mn>2</mn> <mo>⁢</mo> <mi>x</mi> <mo>]</mo> </mrow> <mn>0</mn> <mn>1</mn> </msubsup> </math> open bracket evaluated at 1 minus the same expression evaluated at 0
§ <math intent=':common' display='block' mathbackground='yellow'> open bracket evaluated at 1 minus the same expression evaluated at 0
§ <math intent=':literal' display='block' mathbackground='yellow'> open bracket 2 x close bracket sub 0 super 1 end super
|
§ <math display='block'> <msubsup> <mrow> <mo>[</mo> <mn>2</mn> <mo>⁢</mo> <mi>x</mi> <mo>]</mo> </mrow> <mn>0</mn> <mn>1</mn> </msubsup> </math> open bracket evaluated at 1 minus the same expression evaluated at 0
|
[2x]_0^1 | evaluate 2x at 1 and 0 bracket expression in base | ||
§ <math display='block' mathbackground='yellow'> <mrow> <mn>2</mn> <mo>⁢</mo> <mi>x</mi> <msubsup> <mo>|</mo> <mn>0</mn> <mn>1</mn> </msubsup> </mrow> </math> 2 x evaluated at 1 minus the same expression evaluated at 0
§ <math intent=':common' display='block' mathbackground='yellow'> 2 x evaluated at 1 minus the same expression evaluated at 0
§ <math intent=':literal' display='block' mathbackground='yellow'> 2 x, vertical line sub 0 super 1 end super
|
§ <math display='block'> <mrow> <mn>2</mn> <mo>⁢</mo> <mi>x</mi> <msubsup> <mo>|</mo> <mn>0</mn> <mn>1</mn> </msubsup> </mrow> </math> 2 x evaluated at 1 minus the same expression evaluated at 0
|
2x|_0^1 | evaluate 2x at 1 and 0 vertical bar | ||
§ <math display='block' mathbackground='yellow'> <msubsup> <mrow> <mn>2</mn> <mo>⁢</mo> <mi>x</mi> <mo>|</mo> </mrow> <mn>0</mn> <mn>1</mn> </msubsup> </math> 2 x vertical line sub 0, to the first
§ <math intent=':common' display='block' mathbackground='yellow'> 2 x vertical line sub 0, to the first
§ <math intent=':literal' display='block' mathbackground='yellow'> 2 x vertical line sub 0 super 1 end super
|
§ <math display='block'> <msubsup> <mrow> <mn>2</mn> <mo>⁢</mo> <mi>x</mi> <mo>|</mo> </mrow> <mn>0</mn> <mn>1</mn> </msubsup> </math> 2 x vertical line sub 0, to the first
|
2x|_0^1 | evaluate 2x at 1 and 0 vertical bar expression in base | ||
§ <math display='block'> <msub> <mo>∮</mo> <mi>C</mi> </msub> <mfrac> <mn>1</mn> <mi>z</mi> </mfrac> <mrow> <mi>d</mi> <mi>z</mi> </mrow> </math> the contour integral over c of; 1 over z, d z
§ <math intent=':common' display='block'> the contour integral over c of; 1 over z, d z
§ <math intent=':literal' display='block'> contour integral sub c, 1 over z, d z
|
§ <math display='block'> <msub> <mo>∮</mo> <mi>C</mi> </msub> <mfrac> <mn>1</mn> <mi>z</mi> </mfrac> <mrow> <mi>d</mi> <mi>z</mi> </mrow> </math> the contour integral over c of; 1 over z, d z
|
\oint \frac{1}{z} dz | oint 1 over z dz | ||
Names | |||||
§ <math display='block'> <mrow> <mrow> <mover> <mi>v</mi> <mo>˙</mo> </mover> <mo>**</mo> <mn>2</mn> </mrow> <mo>+</mo> <mrow> <mover> <mi>w</mi> <mo>˙</mo> </mover> <mo>**</mo> <mn>2</mn> </mrow> </mrow> </math> v dot, ** 2, plus w dot, ** 2
§ <math intent=':common' display='block'> v dot, ** 2, plus w dot, ** 2
§ <math intent=':literal' display='block'> v dot ** 2 plus w dot ** 2
|
§ <math display='block'> <mrow> <mrow intent='power($v̇, $n)'> <mover arg='v̇' intent='first-deriv(v)'> <mi>v</mi> <mo>˙</mo> </mover> <mo>**</mo> <mn arg='n'>2</mn> </mrow> <mo>+</mo> <mrow intent='power($ẇ, $n)'> <mover arg='ẇ' intent='first-deriv(w)'> <mi>w</mi> <mo>˙</mo> </mover> <mo>**</mo> <mn arg='n'>2</mn> </mrow> </mrow> </math> first deriv of, v squared, plus first deriv of, w squared
|
\dot{v}**2+\dot{w}**2 | NFC v dot and w dot | ||
Templates | |||||
§ <math display='block'> <mi>x</mi> </math> x
§ <math intent=':common' display='block'> x
§ <math intent=':literal' display='block'> x
|
§ <math display='block'> <mi intent='the_variable_x'>x</mi> </math> the variable x
|
x | x with string | ||
§ <math display='block'> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>!</mo> </mrow> </math> eigh plus b factorial
§ <math intent=':common' display='block'> eigh plus b factorial
§ <math intent=':literal' display='block'> eigh plus b exclamation point
|
§ <math display='block'> <mrow intent='$p(_($a, $f($b)))'> <mi arg='a'>a</mi> <mo arg='p' intent='plus'>+</mo> <mi arg='b'>b</mi> <mo arg='f' intent='factorial'>!</mo> </mrow> </math> plus eigh factorial of, b
|
a+b! | a plus b factorial unary plus intent | ||
§ <math display='block'> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mrow> </math> eigh plus b
§ <math intent=':common' display='block'> eigh plus b
§ <math intent=':literal' display='block'> eigh plus b
|
§ <math display='block'> <mrow intent='foo:int:silent(bar:positive-int-int, $a:foo-bar-foo-bar, $b:number)'> <mi arg='a'>a</mi> <mo arg='p' intent='plus'>+</mo> <mi arg='b' intent='b:negative-int-int'>b</mi> </mrow> </math> bar eigh b
|
a+b | Properties on argref | ||
§ <math display='block'> <mrow> <mi>R</mi> <mo>⟨</mo> <mi>X</mi> <mo>⟩</mo> </mrow> </math> r, left angle bracket x right angle bracket
§ <math intent=':common' display='block'> r, left angle bracket x right angle bracket
§ <math intent=':literal' display='block'> r, left angle bracket x right angle bracket
|
§ <math display='block'> <mrow intent='_(free, $r, _algebra_on, $x)'> <mi arg='r'>R</mi> <mo>⟨</mo> <mi arg='x'>X</mi> <mo>⟩</mo> </mrow> </math> free r algebra on x
§ <math display='block'> <mrow intent='_:silent(free, $r, _algebra_on, $x)'> <mi arg='r'>R</mi> <mo>⟨</mo> <mi arg='x'>X</mi> <mo>⟩</mo> </mrow> </math> free r algebra on x
§ <math display='block'> <mrow intent='free-algebra:silent(_free, $r, _algebra_on, $x)'> <mi arg='r'>R</mi> <mo>⟨</mo> <mi arg='x'>X</mi> <mo>⟩</mo> </mrow> </math> free r algebra on x
|
R\langle X\rangle | free r-algebra on x | ||
§ <math display='block'> <mrow> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mo>|</mo> <mi>y</mi> <mo>-</mo> <mi>z</mi> <mo>|</mo> </mrow> </math> x plus; 2, the absolute value of y minus z, end absolute value,
§ <math intent=':common' display='block'> x plus; 2, the absolute value of y minus z, end absolute value,
§ <math intent=':literal' display='block'> x plus, 2, vertical line y minus z, vertical line
|
§ <math display='block'> <mrow intent='plus:infix($x,times:infix(2,absolute-value(minus:infix($y,$z))))'> <mi arg='x'>x</mi> <mo>+</mo> <mn>2</mn> <mo>|</mo> <mi arg='y'>y</mi> <mo>-</mo> <mi arg='z'>z</mi> <mo>|</mo> </mrow> </math> , x plus; 2 times, the absolute value of, y minus z; end absolute value;,
§ <math display='block'> <mrow intent='plus($x,times(2,absolute-value(infix($y,$z))))'> <mi arg='x'>x</mi> <mo>+</mo> <mn>2</mn> <mo>|</mo> <mi arg='y'>y</mi> <mo>-</mo> <mi arg='z'>z</mi> <mo>|</mo> </mrow> </math> plus of, x comma; times of, 2 comma, the absolute value of infix of, y comma z, end absolute value,
§ <math display='block'> <mrow> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mo intent='absolute-value'>|</mo> <mi>y</mi> <mo>-</mo> <mi>z</mi> <mo intent='end-absolute-value'>|</mo> </mrow> </math> x plus; 2, the absolute value of y minus z, end absolute value,
|
x+2\lvert y-z\rvert | x plus 2 times the absolute-value of y minus z | ||
XML Features | |||||
§ <math display='block'> <mrow> <mi>log</mi> <mi>X</mi> </mrow> </math> log x
§ <math intent=':common' display='block'> log x
§ <math intent=':literal' display='block'> log x
|
§ <math display='block'> <mrow intent='log(x)'/> </math> log of, x
§ <math display='block'> <mrow intent='log($x)'> <mi arg='x'>X</mi> </mrow> </math> log of, x,
§ <math display='block'> <mrow intent='log($x)'> <mi>log</mi> <mi arg='x'>Y</mi> </mrow> </math> log of, y
|
\log x | NCR x28 and x24 | ||
HTML | |||||
§ <math display='block'> <mi>x</mi> <mo>+</mo> <mtext>a <b>bold</b> word</mtext> </math> x plus a bold word
§ <math intent=':common' display='block'> x plus a bold word
§ <math intent=':literal' display='block'> x plus a bold word
|
§ <math display='block'> <mi>x</mi> <mo>+</mo> <mtext>a <b>bold</b> word</mtext> </math> x plus a bold word
|
x+\text{a \textbf{bold} word | nested html b | ||
Units | |||||
§ <math display='block'> <mn>1.5</mn><mi>km</mi> </math> 1.5 km
§ <math intent=':common' display='block'> 1.5 km
§ <math intent=':literal' display='block'> 1.5 km
|
§ <math display='block'> <mn>1.5</mn><mi intent=':unit'>km</mi> </math> 1.5 kilo-metres
|
\qty{1.5}{\kilogram} | Km units | ||
§ <math display='block'> <mn>2</mn><mi mathvariant='normal'>Ω</mi> </math> 2 omega
§ <math intent=':common' display='block'> 2 omega
§ <math intent=':literal' display='block'> 2 omega
|
§ <math display='block'> <mn>2</mn><mi intent=':unit' mathvariant='normal'>Ω</mi> </math> 2 ohms
|
\qty{2}{\ohm} | Ohm units | ||
Chemistry | |||||
§ <math display='block'> <mrow> <mmultiscripts> <mi mathvariant='normal'>H</mi> <mn>2</mn> <mrow/> </mmultiscripts> <mi mathvariant='normal'>O</mi> </mrow> </math> h, subscript 2; o,
§ <math intent=':common' display='block'> h, subscript 2; o,
§ <math intent=':literal' display='block'> h subscript 2 o
|
§ <math display='block'> <mrow intent=':chemical-formula'> <mmultiscripts> <mi mathvariant='normal' intent=':chemical-element'>H</mi> <mn>2</mn> <mrow/> </mmultiscripts> <mi mathvariant='normal' intent=':chemical-element'>O</mi> </mrow> </math> h, subscript 2; o,
|
\ce{H20} | H20 | ||
§ <math display='block'> <mrow> <mrow> <mn>2</mn> <mo>⁢</mo> <mrow> <mmultiscripts> <mi mathvariant='normal'>H</mi> <mn>2</mn> <mrow/> </mmultiscripts> <mo>⁣</mo> <mi mathvariant='normal'>O</mi> </mrow> </mrow> <mo>⟶</mo> <mrow> <mrow> <mn>2</mn> <mo>⁢</mo> <mmultiscripts> <mi mathvariant='normal'>H</mi> <mn>2</mn> <mrow/> </mmultiscripts> </mrow> <mo>+</mo> <mmultiscripts> <mi mathvariant='normal'>O</mi> <mn>2</mn> <mrow/> </mmultiscripts> </mrow> </mrow> </math> 2, h, subscript 2; o; reacts to form; 2 h, subscript 2; plus o, subscript 2,
§ <math intent=':common' display='block'> 2, h, subscript 2; o; reacts to form; 2 h, subscript 2; plus o, subscript 2,
§ <math intent=':literal' display='block'> 2 h subscript 2 o; long rightwards arrow; 2 h subscript 2, plus o subscript 2
|
§ <math display='block'> <mrow intent=':chemical-equation'> <mrow intent=':chemical-equation'> <mn>2</mn> <mo>⁢</mo> <mrow intent=':chemical-equation'> <mmultiscripts intent=':chemical-formula'> <mi mathvariant='normal' intent=':chemical-element'>H</mi> <mn>2</mn> <mrow/> </mmultiscripts> <mo>⁣</mo> <mi mathvariant='normal' intent=':chemical-element'>O</mi> </mrow> </mrow> <mo>⟶</mo> <mrow intent=':chemical-equation'> <mrow intent=':chemical-equation'> <mn>2</mn> <mo>⁢</mo> <mmultiscripts intent=':chemical-formula'> <mi mathvariant='normal' intent=':chemical-element'>H</mi> <mn>2</mn> <mrow/> </mmultiscripts> </mrow> <mo>+</mo> <mmultiscripts intent=':chemical-formula'> <mi mathvariant='normal' intent=':chemical-element'>O</mi> <mn>2</mn> <mrow/> </mmultiscripts> </mrow> </mrow> </math> 2, h, subscript 2; o; reacts to form; 2 h, subscript 2; plus o, subscript 2,
|
\ce{2 H2O → 2 H2 + O2} | 2 H2O → 2 H2 + O | ||
Unexpected arity | |||||
§ <math display='block'> <mfrac> <mi>x</mi> <mi>y</mi> </mfrac> </math> x over y,
§ <math intent=':common' display='block'> x over y,
§ <math intent=':literal' display='block'> x over y,
|
§ <math display='block'> <mfrac intent='divides'> <mi>x</mi> <mi>y</mi> </mfrac> </math> divides
|
- | 0-ary divides | ||
§ <math display='block'> <mfrac> <mi>x</mi> <mi>y</mi> </mfrac> </math> x over y,
§ <math intent=':common' display='block'> x over y,
§ <math intent=':literal' display='block'> x over y,
|
§ <math display='block'> <mfrac intent='divides(z)'> <mi>x</mi> <mi>y</mi> </mfrac> </math> divides of, z
|
- | 1-ary divides | ||
§ <math display='block'> <mfrac> <mi>x</mi> <mi>y</mi> </mfrac> </math> x over y,
§ <math intent=':common' display='block'> x over y,
§ <math intent=':literal' display='block'> x over y,
|
§ <math display='block'> <mfrac intent='divides(w,x,y)'> <mi>x</mi> <mi>y</mi> </mfrac> </math> divides of, w comma x comma y
|
- | 3-ary divides | ||
§ <math display='block'> <mover> <mi>X</mi> <mo>→</mo> </mover> </math> vector x
§ <math intent=':common' display='block'> vector x
§ <math intent=':literal' display='block'> x right arrow
|
§ <math display='block' mathbackground='yellow'> <mover intent='ray($X)'> <mi arg='X'>X</mi> <mo>→</mo> </mover> </math> ray of, x
|
- | 1-ary ray | ||
Content MathML | |||||
§ <math display='block'> <apply> <sin/> <ci>x</ci> </apply> </math> problem with SetMathML
§ <math intent=':common' display='block'> problem with SetMathML
§ <math intent=':literal' display='block'> problem with SetMathML
|
§ <math display='block'> <apply intent='sin(x)'> <sin/> <ci>x</ci> </apply> </math> problem with SetMathML
|
\sin x | content mathml sin x | ||
Intent Grammar Errors | |||||
§ <math display='block'> <mfrac> <mi>x</mi> <mi>y</mi> </mfrac> </math> x over y,
§ <math intent=':common' display='block'> x over y,
§ <math intent=':literal' display='block'> x over y,
|
§ <math display='block'> <mfrac><mi intent='hmm)('>x</mi> <mi>y</mi> </mfrac> </math> x over y,
|
- | bad intent paren | ||
§ <math display='block'> <mrow> <mn>1.234</mn> <mo>+</mo> <mi>x</mi> </mrow> </math> 1.234 plus x
§ <math intent=':common' display='block'> 1.234 plus x
§ <math intent=':literal' display='block'> 1.234 plus x
|
§ <math display='block' mathbackground='yellow'> <mrow intent='sum($a,$b)'> <mn>1.234</mn> <mo>+</mo> <mi>x</mi> </mrow> </math> 1.234 plus x
|
- | bad intent argref | ||
§ <math display='block'> <mrow> <mn>1.234</mn> <mo>+</mo> <mi>x</mi> </mrow> </math> 1.234 plus x
§ <math intent=':common' display='block'> 1.234 plus x
§ <math intent=':literal' display='block'> 1.234 plus x
|
§ <math display='block'> <mrow intent='sum($1.234,$:x:)'> <mn arg='1.234'>1.234</mn> <mo>+</mo> <mi arg=':x:'>x</mi> </mrow> </math> 1.234 plus x
|
- | bad intent arg names | ||
§ <math display='block'> <mi>x</mi> </math> x
§ <math intent=':common' display='block'> x
§ <math intent=':literal' display='block'> x
|
§ <math display='block'> <mi intent='one two'>x</mi> </math> x
|
- | multiple identifiers | ||
§ <math display='block'> <mn>12</mn> </math> 12
§ <math intent=':common' display='block'> 12
§ <math intent=':literal' display='block'> 12
|
§ <math display='block'> <mn intent='1.2e1'>12</mn> </math> 12
|
- | bad number | ||
§ <math display='block'> <mover> <mi>X</mi> <mo>‾</mo> </mover> <mo>+</mo> <mover> <mi>Y</mi> <mo>‾</mo> </mover> </math> x bar, plus y bar,
§ <math intent=':common' display='block'> x bar, plus y bar,
§ <math intent=':literal' display='block'> x line plus y line
|
§ <math display='block'> <mover intent='mean($x('> <mi arg='x'>X</mi> <mo>‾</mo> </mover> <mo>+</mo> <mover intent='mean($x)'> <mi arg='x'>Y</mi> <mo>‾</mo> </mover> </math> x bar, plus mean of, y
|
- | bad intent subexpression | ||
§ <math display='block'> <mi>x</mi> </math> x
§ <math intent=':common' display='block'> x
§ <math intent=':literal' display='block'> x
|
§ <math display='block'> <mi intent='just say this'>x</mi> </math> x
|
x | Free text just say this | ||
§ <math display='block'> <mrow> <mi>x</mi> </mrow> </math> x
§ <math intent=':common' display='block'> x
§ <math intent=':literal' display='block'> x
|
§ <math display='block'> <mrow intent='just say this about $x'> <mi arg='x'>x</mi> </mrow> </math> x
|
x | Free text with argref | ||
§ <math display='block'> <mrow> <mo>🐇</mo> <mi>X</mi> </mrow> </math> 🐇 x
§ <math intent=':common' display='block'> 🐇 x
§ <math intent=':literal' display='block'> 🐇 x
|
§ <math display='block'> <mrow> <mo intent='🐇'>🐇</mo> <mi>X</mi> </mrow> </math> 🐇 x
|
🐇 X | intent 🐇 |