Web Authentication:
An API for accessing Public Key Credentials
Level 3

Editor’s Draft,

More details about this document
This version:
https://w3c.github.io/webauthn/
Latest published version:
https://www.w3.org/TR/webauthn-3/
Previous Versions:
Implementation Report:
https://www.w3.org/2020/12/webauthn-report.html
Feedback:
GitHub
Editors:
(Okta)
(Self-Issued Consulting)
(Microsoft)
(Yubico)
(Cisco)
Former Editors:
(Google)
(Microsoft)
(Google)
(Google)
Jeff Hodges (formerly Google)
J.C. Jones (formerly Mozilla)
(PayPal)
(Microsoft)
(Nok Nok Labs)
Contributors:
John Bradley (Yubico)
Christiaan Brand (Google)
Adam Langley (Google)
Giridhar Mandyam (Qualcomm)
Pascoe (Apple)
Nina Satragno (Google)
Ki-Eun Shin (SK Telecom)
Nick Steele (1Password)
Jiewen Tan (Apple)
Shane Weeden (IBM)
Mike West (Google)
Jeffrey Yasskin (Google)
Anders Åberg (Bitwarden)
Tests:
web-platform-tests webauthn/ (ongoing work)

Abstract

This specification defines an API enabling the creation and use of strong, attested, scoped, public key-based credentials by web applications, for the purpose of strongly authenticating users. Conceptually, one or more public key credentials, each scoped to a given WebAuthn Relying Party, are created by and bound to authenticators as requested by the web application. The user agent mediates access to authenticators and their public key credentials in order to preserve user privacy. Authenticators are responsible for ensuring that no operation is performed without user consent. Authenticators provide cryptographic proof of their properties to Relying Parties via attestation. This specification also describes the functional model for WebAuthn conformant authenticators, including their signature and attestation functionality.

Status of this document

This section describes the status of this document at the time of its publication. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

This document was published by the Web Authentication Working Group as an Editors' Draft. This document is intended to become a W3C Recommendation. Feedback and comments on this specification are welcome. Please use Github issues. Discussions may also be found in the public-webauthn@w3.org archives.

Publication as an Editors' Draft does not imply endorsement by W3C and its Members. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.

This document was produced by a group operating under the W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

This document is governed by the 03 November 2023 W3C Process Document.

1. Introduction

This section is not normative.

This specification defines an API enabling the creation and use of strong, attested, scoped, public key-based credentials by web applications, for the purpose of strongly authenticating users. A public key credential is created and stored by a WebAuthn Authenticator at the behest of a WebAuthn Relying Party, subject to user consent. Subsequently, the public key credential can only be accessed by origins belonging to that Relying Party. This scoping is enforced jointly by conforming User Agents and authenticators. Additionally, privacy across Relying Parties is maintained; Relying Parties are not able to detect any properties, or even the existence, of credentials scoped to other Relying Parties.

Relying Parties employ the Web Authentication API during two distinct, but related, ceremonies involving a user. The first is Registration, where a public key credential is created on an authenticator, and scoped to a Relying Party with the present user’s account (the account might already exist or might be created at this time). The second is Authentication, where the Relying Party is presented with an Authentication Assertion proving the presence and consent of the user who registered the public key credential. Functionally, the Web Authentication API comprises a PublicKeyCredential which extends the Credential Management API [CREDENTIAL-MANAGEMENT-1], and infrastructure which allows those credentials to be used with navigator.credentials.create() and navigator.credentials.get(). The former is used during Registration, and the latter during Authentication.

Broadly, compliant authenticators protect public key credentials, and interact with user agents to implement the Web Authentication API. Implementing compliant authenticators is possible in software executing (a) on a general-purpose computing device, (b) on an on-device Secure Execution Environment, Trusted Platform Module (TPM), or a Secure Element (SE), or (c) off device. Authenticators being implemented on device are called platform authenticators. Authenticators being implemented off device (roaming authenticators) can be accessed over a transport such as Universal Serial Bus (USB), Bluetooth Low Energy (BLE), or Near Field Communications (NFC).

1.1. Specification Roadmap

While many W3C specifications are directed primarily to user agent developers and also to web application developers (i.e., "Web authors"), the nature of Web Authentication requires that this specification be correctly used by multiple audiences, as described below.

All audiences ought to begin with § 1.2 Use Cases, § 1.3 Sample API Usage Scenarios, and § 4 Terminology, and should also refer to [WebAuthnAPIGuide] for an overall tutorial. Beyond that, the intended audiences for this document are the following main groups:

Note: Along with the Web Authentication API itself, this specification defines a request-response cryptographic protocol—the WebAuthn/FIDO2 protocol—between a WebAuthn Relying Party server and an authenticator, where the Relying Party's request consists of a challenge and other input data supplied by the Relying Party and sent to the authenticator. The request is conveyed via the combination of HTTPS, the Relying Party web application, the WebAuthn API, and the platform-specific communications channel between the user agent and the authenticator. The authenticator replies with a digitally signed authenticator data message and other output data, which is conveyed back to the Relying Party server via the same path in reverse. Protocol details vary according to whether an authentication or registration operation is invoked by the Relying Party. See also Figure 1 and Figure 2.

It is important for Web Authentication deployments' end-to-end security that the role of each component—the Relying Party server, the client, and the authenticator— as well as § 13 Security Considerations and § 14 Privacy Considerations, are understood by all audiences.

1.2. Use Cases

The below use case scenarios illustrate use of two very different types of authenticators, as well as outline further scenarios. Additional scenarios, including sample code, are given later in § 1.3 Sample API Usage Scenarios.

1.2.1. Registration

1.2.2. Authentication

1.2.3. New Device Registration

This use case scenario illustrates how a Relying Party can leverage a combination of a roaming authenticator (e.g., a USB security key fob) and a platform authenticator (e.g., a built-in fingerprint sensor) such that the user has:

Note: This approach of registering multiple authenticators for an account is also useful in account recovery use cases.

1.2.4. Other Use Cases and Configurations

A variety of additional use cases and configurations are also possible, including (but not limited to):

1.3. Sample API Usage Scenarios

This section is not normative.

In this section, we walk through some events in the lifecycle of a public key credential, along with the corresponding sample code for using this API. Note that this is an example flow and does not limit the scope of how the API can be used.

As was the case in earlier sections, this flow focuses on a use case involving a passkey roaming authenticator with its own display. One example of such an authenticator would be a smart phone. Other authenticator types are also supported by this API, subject to implementation by the client platform. For instance, this flow also works without modification for the case of an authenticator that is embedded in the client device. The flow also works for the case of an authenticator without its own display (similar to a smart card) subject to specific implementation considerations. Specifically, the client platform needs to display any prompts that would otherwise be shown by the authenticator, and the authenticator needs to allow the client platform to enumerate all the authenticator’s credentials so that the client can have information to show appropriate prompts.

1.3.1. Registration

This is the first-time flow, in which a new credential is created and registered with the server. In this flow, the WebAuthn Relying Party does not have a preference for platform authenticator or roaming authenticators.

  1. The user visits example.com, which serves up a script. At this point, the user may already be logged in using a legacy username and password, or additional authenticator, or other means acceptable to the Relying Party. Or the user may be in the process of creating a new account.

  2. The Relying Party script runs the code snippet below.

  3. The client platform searches for and locates the authenticator.

  4. The client connects to the authenticator, performing any pairing actions if necessary.

  5. The authenticator shows appropriate UI for the user to provide a biometric or other authorization gesture.

  6. The authenticator returns a response to the client, which in turn returns a response to the Relying Party script. If the user declined to select an authenticator or provide authorization, an appropriate error is returned.

  7. If a new credential was created,

    • The Relying Party script sends the newly generated credential public key to the server, along with additional information such as attestation regarding the provenance and characteristics of the authenticator.

    • The server stores the credential public key in its database and associates it with the user as well as with the characteristics of authentication indicated by attestation, also storing a friendly name for later use.

    • The script may store data such as the credential ID in local storage, to improve future UX by narrowing the choice of credential for the user.

The sample code for generating and registering a new key follows:

if (!window.PublicKeyCredential) { /* Client not capable. Handle error. */ }

var publicKey = {
  // The challenge is produced by the server; see the Security Considerations
  challenge: new Uint8Array([21,31,105 /* 29 more random bytes generated by the server */]),

  // Relying Party:
  rp: {
    name: "ACME Corporation"
  },

  // User:
  user: {
    id: Uint8Array.from(window.atob("MIIBkzCCATigAwIBAjCCAZMwggE4oAMCAQIwggGTMII="), c=>c.charCodeAt(0)),
    name: "alex.mueller@example.com",
    displayName: "Alex Müller",
  },

  // This Relying Party will accept either an ES256 or RS256 credential, but
  // prefers an ES256 credential.
  pubKeyCredParams: [
    {
      type: "public-key",
      alg: -7 // "ES256" as registered in the IANA COSE Algorithms registry
    },
    {
      type: "public-key",
      alg: -257 // Value registered by this specification for "RS256"
    }
  ],

  authenticatorSelection: {
    // Try to use UV if possible. This is also the default.
    userVerification: "preferred"
  },

  timeout: 300000,  // 5 minutes
  excludeCredentials: [
    // Don't re-register any authenticator that has one of these credentials
    {"id": Uint8Array.from(window.atob("ufJWp8YGlibm1Kd9XQBWN1WAw2jy5In2Xhon9HAqcXE="), c=>c.charCodeAt(0)), "type": "public-key"},
    {"id": Uint8Array.from(window.atob("E/e1dhZc++mIsz4f9hb6NifAzJpF1V4mEtRlIPBiWdY="), c=>c.charCodeAt(0)), "type": "public-key"}
  ],

  // Make excludeCredentials check backwards compatible with credentials registered with U2F
  extensions: {"appidExclude": "https://acme.example.com"}
};

// Note: The following call will cause the authenticator to display UI.
navigator.credentials.create({ publicKey })
  .then(function (newCredentialInfo) {
    // Send new credential info to server for verification and registration.
  }).catch(function (err) {
    // No acceptable authenticator or user refused consent. Handle appropriately.
  });

1.3.2. Registration Specifically with User-Verifying Platform Authenticator

This is an example flow for when the WebAuthn Relying Party is specifically interested in creating a public key credential with a user-verifying platform authenticator.

  1. The user visits example.com and clicks on the login button, which redirects the user to login.example.com.

  2. The user enters a username and password to log in. After successful login, the user is redirected back to example.com.

  3. The Relying Party script runs the code snippet below.

    1. The user agent checks if a user-verifying platform authenticator is available. If not, terminate this flow.

    2. The Relying Party asks the user if they want to create a credential with it. If not, terminate this flow.

    3. The user agent and/or operating system shows appropriate UI and guides the user in creating a credential using one of the available platform authenticators.

    4. Upon successful credential creation, the Relying Party script conveys the new credential to the server.

if (!window.PublicKeyCredential) { /* Client not capable of the API. Handle error. */ }

PublicKeyCredential.isUserVerifyingPlatformAuthenticatorAvailable()
    .then(function (uvpaAvailable) {
        // If there is a user-verifying platform authenticator
        if (uvpaAvailable) {
            // Render some RP-specific UI and get a Promise for a Boolean value
            return askIfUserWantsToCreateCredential();
        }
    }).then(function (userSaidYes) {
        // If there is a user-verifying platform authenticator
        // AND the user wants to create a credential
        if (userSaidYes) {
            var publicKeyOptions = { /* Public key credential creation options. */};
            return navigator.credentials.create({ "publicKey": publicKeyOptions });
        }
    }).then(function (newCredentialInfo) {
        if (newCredentialInfo) {
            // Send new credential info to server for verification and registration.
        }
    }).catch(function (err) {
        // Something went wrong. Handle appropriately.
    });

1.3.3. Authentication

This is the flow when a user with an already registered credential visits a website and wants to authenticate using the credential.

  1. The user visits example.com, which serves up a script.

  2. The script asks the client for an Authentication Assertion, providing as much information as possible to narrow the choice of acceptable credentials for the user. This can be obtained from the data that was stored locally after registration, or by other means such as prompting the user for a username.

  3. The Relying Party script runs one of the code snippets below.

  4. The client platform searches for and locates the authenticator.

  5. The client connects to the authenticator, performing any pairing actions if necessary.

  6. The authenticator presents the user with a notification that their attention is needed. On opening the notification, the user is shown a friendly selection menu of acceptable credentials using the account information provided when creating the credentials, along with some information on the origin that is requesting these keys.

  7. The authenticator obtains a biometric or other authorization gesture from the user.

  8. The authenticator returns a response to the client, which in turn returns a response to the Relying Party script. If the user declined to select a credential or provide an authorization, an appropriate error is returned.

  9. If an assertion was successfully generated and returned,

    • The script sends the assertion to the server.

    • The server examines the assertion, extracts the credential ID, looks up the registered credential public key in its database, and verifies the assertion signature. If valid, it looks up the identity associated with the assertion’s credential ID; that identity is now authenticated. If the credential ID is not recognized by the server (e.g., it has been deregistered due to inactivity) then the authentication has failed; each Relying Party will handle this in its own way.

    • The server now does whatever it would otherwise do upon successful authentication -- return a success page, set authentication cookies, etc.

If the Relying Party script does not have any hints available (e.g., from locally stored data) to help it narrow the list of credentials, then the sample code for performing such an authentication might look like this:

if (!window.PublicKeyCredential) { /* Client not capable. Handle error. */ }

// credentialId is generated by the authenticator and is an opaque random byte array
var credentialId = new Uint8Array([183, 148, 245 /* more random bytes previously generated by the authenticator */]);
var options = {
  // The challenge is produced by the server; see the Security Considerations
  challenge: new Uint8Array([4,101,15 /* 29 more random bytes generated by the server */]),
  timeout: 300000,  // 5 minutes
  allowCredentials: [{ type: "public-key", id: credentialId }]
};

navigator.credentials.get({ "publicKey": options })
    .then(function (assertion) {
    // Send assertion to server for verification
}).catch(function (err) {
    // No acceptable credential or user refused consent. Handle appropriately.
});

On the other hand, if the Relying Party script has some hints to help it narrow the list of credentials, then the sample code for performing such an authentication might look like the following. Note that this sample also demonstrates how to use the Credential Properties Extension.

if (!window.PublicKeyCredential) { /* Client not capable. Handle error. */ }

var encoder = new TextEncoder();
var acceptableCredential1 = {
    type: "public-key",
    id: encoder.encode("BA44712732CE")
};
var acceptableCredential2 = {
    type: "public-key",
    id: encoder.encode("BG35122345NF")
};

var options = {
  // The challenge is produced by the server; see the Security Considerations
  challenge: new Uint8Array([8,18,33 /* 29 more random bytes generated by the server */]),
  timeout: 300000,  // 5 minutes
  allowCredentials: [acceptableCredential1, acceptableCredential2],
  extensions: { 'credProps': true }
};

navigator.credentials.get({ "publicKey": options })
    .then(function (assertion) {
    // Send assertion to server for verification
}).catch(function (err) {
    // No acceptable credential or user refused consent. Handle appropriately.
});

1.3.4. Aborting Authentication Operations

The below example shows how a developer may use the AbortSignal parameter to abort a credential registration operation. A similar procedure applies to an authentication operation.

const authAbortController = new AbortController();
const authAbortSignal = authAbortController.signal;

authAbortSignal.onabort = function () {
    // Once the page knows the abort started, inform user it is attempting to abort.
}

var options = {
    // A list of options.
}

navigator.credentials.create({
    publicKey: options,
    signal: authAbortSignal})
    .then(function (attestation) {
        // Register the user.
    }).catch(function (error) {
        if (error == "AbortError") {
            // Inform user the credential hasn't been created.
            // Let the server know a key hasn't been created.
        }
    });

// Assume widget shows up whenever authentication occurs.
if (widget == "disappear") {
    authAbortController.abort();
}

1.3.5. Decommissioning

The following are possible situations in which decommissioning a credential might be desired. Note that all of these are handled on the server side and do not need support from the API specified here.

1.4. Platform-Specific Implementation Guidance

This specification defines how to use Web Authentication in the general case. When using Web Authentication in connection with specific platform support (e.g. apps), it is recommended to see platform-specific documentation and guides for additional guidance and limitations.

2. Conformance

This specification defines three conformance classes. Each of these classes is specified so that conforming members of the class are secure against non-conforming or hostile members of the other classes.

2.1. User Agents

A User Agent MUST behave as described by § 5 Web Authentication API in order to be considered conformant. Conforming User Agents MAY implement algorithms given in this specification in any way desired, so long as the end result is indistinguishable from the result that would be obtained by the specification’s algorithms.

A conforming User Agent MUST also be a conforming implementation of the IDL fragments of this specification, as described in the “Web IDL” specification. [WebIDL]

2.1.1. Enumerations as DOMString types

Enumeration types are not referenced by other parts of the Web IDL because that would preclude other values from being used without updating this specification and its implementations. It is important for backwards compatibility that client platforms and Relying Parties handle unknown values. Enumerations for this specification exist here for documentation and as a registry. Where the enumerations are represented elsewhere, they are typed as DOMStrings, for example in transports.

2.2. Authenticators

A WebAuthn Authenticator MUST provide the operations defined by § 6 WebAuthn Authenticator Model, and those operations MUST behave as described there. This is a set of functional and security requirements for an authenticator to be usable by a Conforming User Agent.

As described in § 1.2 Use Cases, an authenticator may be implemented in the operating system underlying the User Agent, or in external hardware, or a combination of both.

2.2.1. Backwards Compatibility with FIDO U2F

Authenticators that only support the § 8.6 FIDO U2F Attestation Statement Format have no mechanism to store a user handle, so the returned userHandle will always be null.

2.3. WebAuthn Relying Parties

A WebAuthn Relying Party MUST behave as described in § 7 WebAuthn Relying Party Operations to obtain all the security benefits offered by this specification. See § 13.4.1 Security Benefits for WebAuthn Relying Parties for further discussion of this.

2.4. All Conformance Classes

All CBOR encoding performed by the members of the above conformance classes MUST be done using the CTAP2 canonical CBOR encoding form. All decoders of the above conformance classes SHOULD reject CBOR that is not validly encoded in the CTAP2 canonical CBOR encoding form and SHOULD reject messages with duplicate map keys.

3. Dependencies

This specification relies on several other underlying specifications, listed below and in Terms defined by reference.

Base64url encoding

The term Base64url Encoding refers to the base64 encoding using the URL- and filename-safe character set defined in Section 5 of [RFC4648], with all trailing '=' characters omitted (as permitted by Section 3.2) and without the inclusion of any line breaks, whitespace, or other additional characters.

CBOR

A number of structures in this specification, including attestation statements and extensions, are encoded using the CTAP2 canonical CBOR encoding form of the Compact Binary Object Representation (CBOR) [RFC8949], as defined in [FIDO-CTAP].

CDDL

This specification describes the syntax of all CBOR-encoded data using the CBOR Data Definition Language (CDDL) [RFC8610].

COSE

CBOR Object Signing and Encryption (COSE) [RFC9052] [RFC9053]. The IANA COSE Algorithms registry [IANA-COSE-ALGS-REG] originally established by [RFC8152] and updated by these specifications is also used.

Credential Management

The API described in this document is an extension of the Credential concept defined in [CREDENTIAL-MANAGEMENT-1].

DOM

DOMException and the DOMException values used in this specification are defined in [DOM4].

ECMAScript

%ArrayBuffer% is defined in [ECMAScript].

URL

The concepts of domain, host, port, scheme, valid domain and valid domain string are defined in [URL].

Web IDL

Many of the interface definitions and all of the IDL in this specification depend on [WebIDL]. This updated version of the Web IDL standard adds support for Promises, which are now the preferred mechanism for asynchronous interaction in all new web APIs.

FIDO AppID

The algorithms for determining the FacetID of a calling application and determining if a caller’s FacetID is authorized for an AppID (used only in the AppID extension) are defined by [FIDO-APPID].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

4. Terminology

Attestation

Generally, attestation is a statement that serves to bear witness, confirm, or authenticate. In the WebAuthn context, attestation is employed to provide verifiable evidence as to the origin of an authenticator and the data it emits. This includes such things as credential IDs, credential key pairs, signature counters, etc.

An attestation statement is provided within an attestation object during a registration ceremony. See also § 6.5 Attestation and Figure 6. Whether or how the client conveys the attestation statement and aaguid portions of the attestation object to the Relying Party is described by attestation conveyance.

Attestation Certificate

An X.509 Certificate for the attestation key pair used by an authenticator to attest to its manufacture and capabilities. At registration time, the authenticator uses the attestation private key to sign the Relying Party-specific credential public key (and additional data) that it generates and returns via the authenticatorMakeCredential operation. Relying Parties use the attestation public key conveyed in the attestation certificate to verify the attestation signature. Note that in the case of self attestation, the authenticator has no distinct attestation key pair nor attestation certificate, see self attestation for details.

Authentication
Authentication Ceremony

The ceremony where a user, and the user’s client platform (containing or connected to at least one authenticator) work in concert to cryptographically prove to a Relying Party that the user controls the credential private key of a previously-registered public key credential (see Registration). Note that this includes a test of user presence or user verification.

The WebAuthn authentication ceremony is defined in § 7.2 Verifying an Authentication Assertion, and is initiated by the Relying Party invoking a navigator.credentials.get() operation with a publicKey argument. See § 5 Web Authentication API for an introductory overview and § 1.3.3 Authentication for implementation examples.

Authentication Assertion
Assertion

The cryptographically signed AuthenticatorAssertionResponse object returned by an authenticator as the result of an authenticatorGetAssertion operation.

This corresponds to the [CREDENTIAL-MANAGEMENT-1] specification’s single-use credentials.

Authenticator
WebAuthn Authenticator

A cryptographic entity, existing in hardware or software, that can register a user with a given Relying Party and later assert possession of the registered public key credential, and optionally verify the user to the Relying Party. Authenticators can report information regarding their type and security characteristics via attestation during registration and assertion.

A WebAuthn Authenticator could be a roaming authenticator, a dedicated hardware subsystem integrated into the client device, or a software component of the client or client device. A WebAuthn Authenticator is not necessarily confined to operating in a local context, and can generate or store a credential key pair in a server outside of client-side hardware.

In general, an authenticator is assumed to have only one user. If multiple natural persons share access to an authenticator, they are considered to represent the same user in the context of that authenticator. If an authenticator implementation supports multiple users in separated compartments, then each compartment is considered a separate authenticator with a single user with no access to other users' credentials.

Authorization Gesture

An authorization gesture is a physical interaction performed by a user with an authenticator as part of a ceremony, such as registration or authentication. By making such an authorization gesture, a user provides consent for (i.e., authorizes) a ceremony to proceed. This MAY involve user verification if the employed authenticator is capable, or it MAY involve a simple test of user presence.

Backed Up

Public Key Credential Sources may be backed up in some fashion such that they may become present on an authenticator other than their generating authenticator. Backup can occur via mechanisms including but not limited to peer-to-peer sync, cloud sync, local network sync, and manual import/export. See also § 6.1.3 Credential Backup State.

Backup Eligibility
Backup Eligible

A Public Key Credential Source's generating authenticator determines at creation time whether the public key credential source is allowed to be backed up. Backup eligibility is signaled in authenticator data's flags along with the current backup state. Backup eligibility is a credential property and is permanent for a given public key credential source. A backup eligible public key credential source is referred to as a multi-device credential whereas one that is not backup eligible is referred to as a single-device credential. See also § 6.1.3 Credential Backup State.

Backup State

The current backup state of a multi-device credential as determined by the current managing authenticator. Backup state is signaled in authenticator data's flags and can change over time. See also backup eligibility and § 6.1.3 Credential Backup State.

Biometric Authenticator

Any authenticator that implements biometric recognition.

Biometric Recognition

The automated recognition of individuals based on their biological and behavioral characteristics [ISOBiometricVocabulary].

Bound credential
"Authenticator contains a credential"
"Credential created on an authenticator"

A public key credential source or public key credential is said to be bound to its managing authenticator. This means that only the managing authenticator can generate assertions for the public key credential sources bound to it.

This may also be expressed as "the managing authenticator contains the bound credential", or "the bound credential was created on its managing authenticator". Note, however, that a server-side credential might not be physically stored in persistent memory inside the authenticator, hence "bound to" is the primary term. See § 6.2.2 Credential Storage Modality.

Ceremony

The concept of a ceremony [Ceremony] is an extension of the concept of a network protocol, with human nodes alongside computer nodes and with communication links that include user interface(s), human-to-human communication, and transfers of physical objects that carry data. What is out-of-band to a protocol is in-band to a ceremony. In this specification, Registration and Authentication are ceremonies, and an authorization gesture is often a component of those ceremonies.

Client
WebAuthn Client

Also referred to herein as simply a client. See also Conforming User Agent. A WebAuthn Client is an intermediary entity typically implemented in the user agent (in whole, or in part). Conceptually, it underlies the Web Authentication API and embodies the implementation of the [[Create]](origin, options, sameOriginWithAncestors) and [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors) internal methods. It is responsible for both marshalling the inputs for the underlying authenticator operations, and for returning the results of the latter operations to the Web Authentication API's callers.

The WebAuthn Client runs on, and is distinct from, a WebAuthn Client Device.

Client Device
WebAuthn Client Device

The hardware device on which the WebAuthn Client runs, for example a smartphone, a laptop computer or a desktop computer, and the operating system running on that hardware.

The distinctions between a WebAuthn Client device and a client are:

A client device and a client together constitute a client platform.

Client Platform

A client device and a client together make up a client platform. A single hardware device MAY be part of multiple distinct client platforms at different times by running different operating systems and/or clients.

Client-Side

This refers in general to the combination of the user’s client platform, authenticators, and everything gluing it all together.

Client-side discoverable Public Key Credential Source
Client-side discoverable Credential
Discoverable Credential
Passkey
[DEPRECATED] Resident Credential
[DEPRECATED] Resident Key

Note: Historically, client-side discoverable credentials have been known as resident credentials or resident keys. Due to the phrases ResidentKey and residentKey being widely used in both the WebAuthn API and also in the Authenticator Model (e.g., in dictionary member names, algorithm variable names, and operation parameters) the usage of resident within their names has not been changed for backwards compatibility purposes. Also, the term resident key is defined here as equivalent to a client-side discoverable credential.

A Client-side discoverable Public Key Credential Source, or Discoverable Credential for short, is a public key credential source that is discoverable and usable in authentication ceremonies where the Relying Party does not provide any credential IDs, i.e., the Relying Party invokes navigator.credentials.get() with an empty allowCredentials argument. This means that the Relying Party does not necessarily need to first identify the user.

As a consequence, a discoverable credential capable authenticator can generate an assertion signature for a discoverable credential given only an RP ID, which in turn necessitates that the public key credential source is stored in the authenticator or client platform. This is in contrast to a Server-side Public Key Credential Source, which requires that the authenticator is given both the RP ID and the credential ID but does not require client-side storage of the public key credential source.

See also: client-side credential storage modality and non-discoverable credential.

Note: Client-side discoverable credentials are also usable in authentication ceremonies where credential IDs are given, i.e., when calling navigator.credentials.get() with a non-empty allowCredentials argument.

Conforming User Agent

A user agent implementing, in cooperation with the underlying client device, the Web Authentication API and algorithms given in this specification, and handling communication between authenticators and Relying Parties.

Credential ID

A probabilistically-unique byte sequence identifying a public key credential source and its authentication assertions. At most 1023 bytes long.

Credential IDs are generated by authenticators in two forms:

  1. At least 16 bytes that include at least 100 bits of entropy, or

  2. The public key credential source, without its Credential ID or mutable items, encrypted so only its managing authenticator can decrypt it. This form allows the authenticator to be nearly stateless, by having the Relying Party store any necessary state.

    Note: [FIDO-UAF-AUTHNR-CMDS] includes guidance on encryption techniques under "Security Guidelines".

Relying Parties do not need to distinguish these two Credential ID forms.

Credential Key Pair
Credential Private Key
Credential Public Key
User Public Key

A credential key pair is a pair of asymmetric cryptographic keys generated by an authenticator and scoped to a specific WebAuthn Relying Party. It is the central part of a public key credential.

A credential public key is the public key portion of a credential key pair. The credential public key is returned to the Relying Party during a registration ceremony.

A credential private key is the private key portion of a credential key pair. The credential private key is bound to a particular authenticator - its managing authenticator - and is expected to never be exposed to any other party, not even to the owner of the authenticator.

Note that in the case of self attestation, the credential key pair is also used as the attestation key pair, see self attestation for details.

Note: The credential public key is referred to as the user public key in FIDO UAF [UAFProtocol], and in FIDO U2F [FIDO-U2F-Message-Formats] and some parts of this specification that relate to it.

Credential Properties

A credential property is some characteristic property of a public key credential source, such as whether it is a client-side discoverable credential or a server-side credential.

Credential Record

In order to implement the algorithms defined in § 7 WebAuthn Relying Party Operations, the Relying Party MUST store some properties of registered public key credential sources. The credential record struct is an abstraction of these properties stored in a user account. A credential record is created during a registration ceremony and used in subsequent authentication ceremonies. Relying Parties MAY delete credential records as necessary or when requested by users.

The following items are RECOMMENDED in order to implement all steps of § 7.1 Registering a New Credential and § 7.2 Verifying an Authentication Assertion as defined:

type

The type of the public key credential source.

id

The Credential ID of the public key credential source.

publicKey

The credential public key of the public key credential source.

signCount

The latest value of the signature counter in the authenticator data from any ceremony using the public key credential source.

transports

The value returned from getTransports() when the public key credential source was registered.

Note: Modifying or removing items from the value returned from getTransports() could negatively impact user experience, or even prevent use of the corresponding credential.

uvInitialized

A Boolean value indicating whether any credential from this public key credential source has had the UV flag set.

When this is true, the Relying Party MAY consider the UV flag as an authentication factor in authentication ceremonies. For example, a Relying Party might skip a password prompt if uvInitialized is true and the UV flag is set, even when user verification was not required.

When this is false, including an authentication ceremony where it would be updated to true, the UV flag MUST NOT be relied upon as an authentication factor. This is because the first time a public key credential source sets the UV flag to 1, there is not yet any trust relationship established between the Relying Party and the authenticator's user verification. Therefore, updating uvInitialized from false to true SHOULD require authorization by an additional authentication factor equivalent to WebAuthn user verification.

backupEligible

The value of the BE flag when the public key credential source was created.

backupState

The latest value of the BS flag in the authenticator data from any ceremony using the public key credential source.

The following items are OPTIONAL:

attestationObject

The value of the attestationObject attribute when the public key credential source was registered. Storing this enables the Relying Party to reference the credential’s attestation statement at a later time.

attestationClientDataJSON

The value of the clientDataJSON attribute when the public key credential source was registered. Storing this in combination with the above attestationObject item enables the Relying Party to re-verify the attestation signature at a later time.

WebAuthn extensions MAY define additional items needed to process the extension. Relying Parties MAY also include any additional items as needed, and MAY omit any items not needed for their implementation.

The credential descriptor for a credential record is a PublicKeyCredentialDescriptor value with the contents:

type

The type of the credential record.

id

The id of the credential record.

transports

The transports of the credential record.

Generating Authenticator

The Generating Authenticator is the authenticator involved in the authenticatorMakeCredential operation resulting in the creation of a given public key credential source. The generating authenticator is the same as the managing authenticator for single-device credentials. For multi-device credentials, the generating authenticator may or may not be the same as the current managing authenticator participating in a given authentication operation.

Human Palatability

An identifier that is human-palatable is intended to be rememberable and reproducible by typical human users, in contrast to identifiers that are, for example, randomly generated sequences of bits [EduPersonObjectClassSpec].

Non-Discoverable Credential

This is a credential whose credential ID must be provided in allowCredentials when calling navigator.credentials.get() because it is not client-side discoverable. See also server-side credentials.

Registrable Origin Label

The first domain label of the registrable domain of a domain, or null if the registrable domain is null. For example, the registrable origin label of both example.co.uk and www.example.de is example if both co.uk and de are public suffixes.

Public Key Credential

Generically, a credential is data one entity presents to another in order to authenticate the former to the latter [RFC4949]. The term public key credential refers to one of: a public key credential source, the possibly-attested credential public key corresponding to a public key credential source, or an authentication assertion. Which one is generally determined by context.

Note: This is a willful violation of [RFC4949]. In English, a "credential" is both a) the thing presented to prove a statement and b) intended to be used multiple times. It’s impossible to achieve both criteria securely with a single piece of data in a public key system. [RFC4949] chooses to define a credential as the thing that can be used multiple times (the public key), while this specification gives "credential" the English term’s flexibility. This specification uses more specific terms to identify the data related to an [RFC4949] credential:
"Authentication information" (possibly including a private key)

Public key credential source

"Signed value"

Authentication assertion

[RFC4949] "credential"

Credential public key or attestation object

At registration time, the authenticator creates an asymmetric key pair, and stores its private key portion and information from the Relying Party into a public key credential source. The public key portion is returned to the Relying Party, which then stores it in the active user account. Subsequently, only that Relying Party, as identified by its RP ID, is able to employ the public key credential in authentication ceremonies, via the get() method. The Relying Party uses its stored copy of the credential public key to verify the resultant authentication assertion.

Public Key Credential Source

A credential source ([CREDENTIAL-MANAGEMENT-1]) used by an authenticator to generate authentication assertions. A public key credential source consists of a struct with the following items:

type

whose value is of PublicKeyCredentialType, defaulting to public-key.

id

A Credential ID.

privateKey

The credential private key.

rpId

The Relying Party Identifier, for the Relying Party this public key credential source is scoped to. This is determined by the rp.id parameter of the create() operation.

userHandle

The user handle associated when this public key credential source was created. This item is nullable, however user handle MUST always be populated for discoverable credentials.

otherUI

OPTIONAL other information used by the authenticator to inform its UI. For example, this might include the user’s displayName. otherUI is a mutable item and SHOULD NOT be bound to the public key credential source in a way that prevents otherUI from being updated.

The authenticatorMakeCredential operation creates a public key credential source bound to a managing authenticator and returns the credential public key associated with its credential private key. The Relying Party can use this credential public key to verify the authentication assertions created by this public key credential source.

Rate Limiting

The process (also known as throttling) by which an authenticator implements controls against brute force attacks by limiting the number of consecutive failed authentication attempts within a given period of time. If the limit is reached, the authenticator should impose a delay that increases exponentially with each successive attempt, or disable the current authentication modality and offer a different authentication factor if available. Rate limiting is often implemented as an aspect of user verification.

Registration
Registration Ceremony

The ceremony where a user, a Relying Party, and the user’s client platform (containing or connected to at least one authenticator) work in concert to create a public key credential and associate it with a user account. Note that this includes employing a test of user presence or user verification. After a successful registration ceremony, the user can be authenticated by an authentication ceremony.

The WebAuthn registration ceremony is defined in § 7.1 Registering a New Credential, and is initiated by the Relying Party invoking a navigator.credentials.create() operation with a publicKey argument. See § 5 Web Authentication API for an introductory overview and § 1.3.1 Registration for implementation examples.

Relying Party
WebAuthn Relying Party

The entity whose web application utilizes the Web Authentication API to register and authenticate users.

A Relying Party implementation typically consists of both some client-side script that invokes the Web Authentication API in the client, and a server-side component that executes the Relying Party operations and other application logic. Communication between the two components MUST use HTTPS or equivalent transport security, but is otherwise beyond the scope of this specification.

Note: While the term Relying Party is also often used in other contexts (e.g., X.509 and OAuth), an entity acting as a Relying Party in one context is not necessarily a Relying Party in other contexts. In this specification, the term WebAuthn Relying Party is often shortened to be just Relying Party, and explicitly refers to a Relying Party in the WebAuthn context. Note that in any concrete instantiation a WebAuthn context may be embedded in a broader overall context, e.g., one based on OAuth.

Relying Party Identifier
RP ID

In the context of the WebAuthn API, a relying party identifier is a valid domain string identifying the WebAuthn Relying Party on whose behalf a given registration or authentication ceremony is being performed. A public key credential can only be used for authentication with the same entity (as identified by RP ID) it was registered with.

By default, the RP ID for a WebAuthn operation is set to the caller’s origin's effective domain. This default MAY be overridden by the caller, as long as the caller-specified RP ID value is a registrable domain suffix of or is equal to the caller’s origin's effective domain. See also § 5.1.3 Create a New Credential - PublicKeyCredential’s [[Create]](origin, options, sameOriginWithAncestors) Internal Method and § 5.1.4 Use an Existing Credential to Make an Assertion.

An RP ID is based on a host's domain name. It does not itself include a scheme or port, as an origin does. The RP ID of a public key credential determines its scope. I.e., it determines the set of origins on which the public key credential may be exercised, as follows:

For example, given a Relying Party whose origin is https://login.example.com:1337, then the following RP IDs are valid: login.example.com (default) and example.com, but not m.login.example.com and not com. Another example of a valid origin is http://localhost:8000, due to the origin being localhost.

This is done in order to match the behavior of pervasively deployed ambient credentials (e.g., cookies, [RFC6265]). Please note that this is a greater relaxation of "same-origin" restrictions than what document.domain's setter provides.

These restrictions on origin values apply to WebAuthn Clients.

Other specifications mimicking the WebAuthn API to enable WebAuthn public key credentials on non-Web platforms (e.g. native mobile applications), MAY define different rules for binding a caller to a Relying Party Identifier. Though, the RP ID syntaxes MUST conform to either valid domain strings or URIs [RFC3986] [URL].

Server-side Public Key Credential Source
Server-side Credential
[DEPRECATED] Non-Resident Credential

Note: Historically, server-side credentials have been known as non-resident credentials. For backwards compatibility purposes, the various WebAuthn API and Authenticator Model components with various forms of resident within their names have not been changed.

A Server-side Public Key Credential Source, or Server-side Credential for short, is a public key credential source that is only usable in an authentication ceremony when the Relying Party supplies its credential ID in navigator.credentials.get()'s allowCredentials argument. This means that the Relying Party must manage the credential’s storage and discovery, as well as be able to first identify the user in order to discover the credential IDs to supply in the navigator.credentials.get() call.

Client-side storage of the public key credential source is not required for a server-side credential. This is in contrast to a client-side discoverable credential, which instead does not require the user to first be identified in order to provide the user’s credential IDs to a navigator.credentials.get() call.

See also: server-side credential storage modality and non-discoverable credential.

Test of User Presence

A test of user presence is a simple form of authorization gesture and technical process where a user interacts with an authenticator by (typically) simply touching it (other modalities may also exist), yielding a Boolean result. Note that this does not constitute user verification because a user presence test, by definition, is not capable of biometric recognition, nor does it involve the presentation of a shared secret such as a password or PIN.

User Account

In the context of this specification, a user account denotes the mapping of a set of credentials [CREDENTIAL-MANAGEMENT-1] to a (sub)set of a Relying Party's resources, as maintained and authorized by the Relying Party. The Relying Party maps a given public key credential to a user account by assigning a user account-specific value to the credential’s user handle and storing a credential record for the credential in the user account. This mapping, the set of credentials, and their authorizations, may evolve over time. A given user account might be accessed by one or more natural persons (also known as "users"), and one natural person might have access to one or more user accounts, depending on actions of the user(s) and the Relying Party.

User Consent

User consent means the user agrees with what they are being asked, i.e., it encompasses reading and understanding prompts. An authorization gesture is a ceremony component often employed to indicate user consent.

User Handle

A user handle is an identifier for a user account, specified by the Relying Party as user.id during registration. Discoverable credentials store this identifier and MUST return it as response.userHandle in authentication ceremonies started with an empty allowCredentials argument.

The main use of the user handle is to identify the user account in such authentication ceremonies, but the credential ID could be used instead. The main differences are that the credential ID is chosen by the authenticator and is unique for each credential, while the user handle is chosen by the Relying Party and ought to be the same for all credentials registered to the same user account.

Authenticators map pairs of RP ID and user handle to public key credential sources. As a consequence, an authenticator will store at most one discoverable credential per user handle per Relying Party. Therefore a secondary use of the user handle is to allow authenticators to know when to replace an existing discoverable credential with a new one during the registration ceremony.

A user handle is an opaque byte sequence with a maximum size of 64 bytes, and is not meant to be displayed to the user. It MUST NOT contain personally identifying information, see § 14.6.1 User Handle Contents.

User Present

Upon successful completion of a user presence test, the user is said to be "present".

User Verification

The technical process by which an authenticator locally authorizes the invocation of the authenticatorMakeCredential and authenticatorGetAssertion operations. User verification MAY be instigated through various authorization gesture modalities; for example, through a touch plus pin code, password entry, or biometric recognition (e.g., presenting a fingerprint) [ISOBiometricVocabulary]. The intent is to distinguish individual users. See also § 6.2.3 Authentication Factor Capability.

Note that user verification does not give the Relying Party a concrete identification of the user, but when 2 or more ceremonies with user verification have been done with that credential it expresses that it was the same user that performed all of them. The same user might not always be the same natural person, however, if multiple natural persons share access to the same authenticator.

Note: Distinguishing natural persons depends in significant part upon the client platform's and authenticator's capabilities. For example, some devices are intended to be used by a single individual, yet they may allow multiple natural persons to enroll fingerprints or know the same PIN and thus access the same user account(s) using that device.

NOTE: Invocation of the authenticatorMakeCredential and authenticatorGetAssertion operations implies use of key material managed by the authenticator.

For security, user verification and use of credential private keys MUST all occur within the logical security boundary defining the authenticator.

User verification procedures MAY implement rate limiting as a protection against brute force attacks.

User Verified

Upon successful completion of a user verification process, the user is said to be "verified".

5. Web Authentication API

This section normatively specifies the API for creating and using public key credentials. The basic idea is that the credentials belong to the user and are managed by a WebAuthn Authenticator, with which the WebAuthn Relying Party interacts through the client platform. Relying Party scripts can (with the user’s consent) request the browser to create a new credential for future use by the Relying Party. See Figure , below.

Registration Flow

Scripts can also request the user’s permission to perform authentication operations with an existing credential. See Figure , below.

Authentication Flow

All such operations are performed in the authenticator and are mediated by the client platform on the user’s behalf. At no point does the script get access to the credentials themselves; it only gets information about the credentials in the form of objects.

In addition to the above script interface, the authenticator MAY implement (or come with client software that implements) a user interface for management. Such an interface MAY be used, for example, to reset the authenticator to a clean state or to inspect the current state of the authenticator. In other words, such an interface is similar to the user interfaces provided by browsers for managing user state such as history, saved passwords, and cookies. Authenticator management actions such as credential deletion are considered to be the responsibility of such a user interface and are deliberately omitted from the API exposed to scripts.

The security properties of this API are provided by the client and the authenticator working together. The authenticator, which holds and manages credentials, ensures that all operations are scoped to a particular origin, and cannot be replayed against a different origin, by incorporating the origin in its responses. Specifically, as defined in § 6.3 Authenticator Operations, the full origin of the requester is included, and signed over, in the attestation object produced when a new credential is created as well as in all assertions produced by WebAuthn credentials.

Additionally, to maintain user privacy and prevent malicious Relying Parties from probing for the presence of public key credentials belonging to other Relying Parties, each credential is also scoped to a Relying Party Identifier, or RP ID. This RP ID is provided by the client to the authenticator for all operations, and the authenticator ensures that credentials created by a Relying Party can only be used in operations requested by the same RP ID. Separating the origin from the RP ID in this way allows the API to be used in cases where a single Relying Party maintains multiple origins.

The client facilitates these security measures by providing the Relying Party's origin and RP ID to the authenticator for each operation. Since this is an integral part of the WebAuthn security model, user agents only expose this API to callers in secure contexts. For web contexts in particular, this only includes those accessed via a secure transport (e.g., TLS) established without errors.

The Web Authentication API is defined by the union of the Web IDL fragments presented in the following sections. A combined IDL listing is given in the IDL Index.

5.1. PublicKeyCredential Interface

The PublicKeyCredential interface inherits from Credential [CREDENTIAL-MANAGEMENT-1], and contains the attributes that are returned to the caller when a new credential is created, or a new assertion is requested.

[SecureContext, Exposed=Window]
interface PublicKeyCredential : Credential {
    [SameObject] readonly attribute ArrayBuffer              rawId;
    [SameObject] readonly attribute AuthenticatorResponse    response;
    readonly attribute DOMString?                            authenticatorAttachment;
    AuthenticationExtensionsClientOutputs getClientExtensionResults();
    static Promise<boolean> isConditionalMediationAvailable();
    PublicKeyCredentialJSON toJSON();
};
id

This attribute is inherited from Credential, though PublicKeyCredential overrides Credential's getter, instead returning the base64url encoding of the data contained in the object’s [[identifier]] internal slot.

rawId

This attribute returns the ArrayBuffer contained in the [[identifier]] internal slot.

response, of type AuthenticatorResponse, readonly

This attribute contains the authenticator's response to the client’s request to either create a public key credential, or generate an authentication assertion. If the PublicKeyCredential is created in response to create(), this attribute’s value will be an AuthenticatorAttestationResponse, otherwise, the PublicKeyCredential was created in response to get(), and this attribute’s value will be an AuthenticatorAssertionResponse.

authenticatorAttachment, of type DOMString, readonly, nullable

This attribute reports the authenticator attachment modality in effect at the time the navigator.credentials.create() or navigator.credentials.get() methods successfully complete. The attribute’s value SHOULD be a member of AuthenticatorAttachment. Relying Parties SHOULD treat unknown values as if the value were null.

Note: If, as the result of a registration or authentication ceremony, authenticatorAttachment's value is "cross-platform" and concurrently isUserVerifyingPlatformAuthenticatorAvailable returns true, then the user employed a roaming authenticator for this ceremony while there is an available platform authenticator. Thus the Relying Party has the opportunity to prompt the user to register the available platform authenticator, which may enable more streamlined user experience flows.

An authenticator’s attachment modality could change over time. For example, a mobile phone might at one time only support platform attachment but later receive updates to support cross-platform attachment as well.

getClientExtensionResults()

This operation returns the value of [[clientExtensionsResults]], which is a map containing extension identifierclient extension output entries produced by the extension’s client extension processing.

isConditionalMediationAvailable()

PublicKeyCredential overrides this method to indicate availability for conditional mediation during navigator.credentials.get(). WebAuthn Relying Parties SHOULD verify availability before attempting to set options.mediation to conditional.

Upon invocation, a promise is returned that resolves with a value of true if conditional user mediation is available, or false otherwise.

This method has no arguments and returns a promise to a Boolean value.

The conditionalGet capability is equivalent to this promise resolving to true.

Note: If this method is not present, conditional user mediation is not available for navigator.credentials.get().

Note: This method does not indicate whether or not conditional user mediation is available in navigator.credentials.create(). For that, see the conditionalCreate capability in getClientCapabilities().

toJSON()

This operation returns RegistrationResponseJSON or AuthenticationResponseJSON, which are JSON type representations mirroring PublicKeyCredential, suitable for submission to a Relying Party server as an application/json payload. The client is in charge of serializing values to JSON types as usual, but MUST take additional steps to first encode any ArrayBuffer values to DOMString values using base64url encoding.

The RegistrationResponseJSON.clientExtensionResults or AuthenticationResponseJSON.clientExtensionResults member MUST be set to the output of getClientExtensionResults(), with any ArrayBuffer values encoded to DOMString values using base64url encoding. This MAY include ArrayBuffer values from extensions registered in the IANA "WebAuthn Extension Identifiers" registry [IANA-WebAuthn-Registries] but not defined in § 9 WebAuthn Extensions.

The AuthenticatorAttestationResponseJSON.transports member MUST be set to the output of getTransports().

The AuthenticatorAttestationResponseJSON.publicKey member MUST be set to the output of getPublicKey().

The AuthenticatorAttestationResponseJSON.publicKeyAlgorithm member MUST be set to the output of getPublicKeyAlgorithm().

typedef DOMString Base64URLString;
// The structure of this object will be either
// RegistrationResponseJSON or AuthenticationResponseJSON
typedef object PublicKeyCredentialJSON;

dictionary RegistrationResponseJSON {
    required DOMString id;
    required Base64URLString rawId;
    required AuthenticatorAttestationResponseJSON response;
    DOMString authenticatorAttachment;
    required AuthenticationExtensionsClientOutputsJSON clientExtensionResults;
    required DOMString type;
};

dictionary AuthenticatorAttestationResponseJSON {
    required Base64URLString clientDataJSON;
    required Base64URLString authenticatorData;
    required sequence<DOMString> transports;
    // The publicKey field will be missing if pubKeyCredParams was used to
    // negotiate a public-key algorithm that the user agent doesn't
    // understand. (See section “Easily accessing credential data” for a
    // list of which algorithms user agents must support.) If using such an
    // algorithm then the public key must be parsed directly from
    // attestationObject or authenticatorData.
    Base64URLString publicKey;
    required COSEAlgorithmIdentifier publicKeyAlgorithm;
    // This value contains copies of some of the fields above. See
    // section “Easily accessing credential data”.
    required Base64URLString attestationObject;
};

dictionary AuthenticationResponseJSON {
    required DOMString id;
    required Base64URLString rawId;
    required AuthenticatorAssertionResponseJSON response;
    DOMString authenticatorAttachment;
    required AuthenticationExtensionsClientOutputsJSON clientExtensionResults;
    required DOMString type;
};

dictionary AuthenticatorAssertionResponseJSON {
    required Base64URLString clientDataJSON;
    required Base64URLString authenticatorData;
    required Base64URLString signature;
    Base64URLString userHandle;
};

dictionary AuthenticationExtensionsClientOutputsJSON {
};
[[type]]

The PublicKeyCredential interface object's [[type]] internal slot's value is the string "public-key".

Note: This is reflected via the type attribute getter inherited from Credential.

[[discovery]]

The PublicKeyCredential interface object's [[discovery]] internal slot's value is "remote".

[[identifier]]

This internal slot contains the credential ID, chosen by the authenticator. The credential ID is used to look up credentials for use, and is therefore expected to be globally unique with high probability across all credentials of the same type, across all authenticators.

This API does not constrain the format of this identifier, except that it MUST NOT be longer than 1023 bytes and MUST be sufficient for the authenticator to uniquely select a key. For example, an authenticator without on-board storage may create identifiers containing a credential private key wrapped with a symmetric key that is burned into the authenticator.

[[clientExtensionsResults]]

This internal slot contains the results of processing client extensions requested by the Relying Party upon the Relying Party's invocation of either navigator.credentials.create() or navigator.credentials.get().

PublicKeyCredential's interface object inherits Credential's implementation of [[CollectFromCredentialStore]](origin, options, sameOriginWithAncestors), and defines its own implementation of each of [[Create]](origin, options, sameOriginWithAncestors), [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors), and [[Store]](credential, sameOriginWithAncestors).

Calling CredentialsContainer's preventSilentAccess() method will have no effect on PublicKeyCredential credentials, since they always require user interaction.

5.1.1. CredentialCreationOptions Dictionary Extension

To support registration via navigator.credentials.create(), this document extends the CredentialCreationOptions dictionary as follows:

partial dictionary CredentialCreationOptions {
    PublicKeyCredentialCreationOptions      publicKey;
};

5.1.2. CredentialRequestOptions Dictionary Extension

To support obtaining assertions via navigator.credentials.get(), this document extends the CredentialRequestOptions dictionary as follows:

partial dictionary CredentialRequestOptions {
    PublicKeyCredentialRequestOptions      publicKey;
};

5.1.3. Create a New Credential - PublicKeyCredential’s [[Create]](origin, options, sameOriginWithAncestors) Internal Method

PublicKeyCredential's interface object's implementation of the [[Create]](origin, options, sameOriginWithAncestors) internal method [CREDENTIAL-MANAGEMENT-1] allows WebAuthn Relying Party scripts to call navigator.credentials.create() to request the creation of a new public key credential source, bound to an authenticator.

By setting options.mediation to conditional, Relying Parties can indicate that they would like to register a credential without prominent modal UI if the user has already consented to create a credential. The Relying Party SHOULD first use getClientCapabilities() to check that the client supports the conditionalCreate capability in order to prevent a user-visible error in case this feature is not available. The client MUST set BOTH requireUserPresence and requireUserVerification to FALSE when options.mediation is set to conditional unless they may explicitly performed during the ceremony.

Any navigator.credentials.create() operation can be aborted by leveraging the AbortController; see DOM § 3.3 Using AbortController and AbortSignal objects in APIs for detailed instructions.

This internal method accepts three arguments:

origin

This argument is the relevant settings object's origin, as determined by the calling create() implementation.

options

This argument is a CredentialCreationOptions object whose options.publicKey member contains a PublicKeyCredentialCreationOptions object specifying the desired attributes of the to-be-created public key credential.

sameOriginWithAncestors

This argument is a Boolean value which is true if and only if the caller’s environment settings object is same-origin with its ancestors. It is false if caller is cross-origin.

Note: Invocation of this internal method indicates that it was allowed by permissions policy, which is evaluated at the [CREDENTIAL-MANAGEMENT-1] level. See § 5.9 Permissions Policy integration.

Note: This algorithm is synchronous: the Promise resolution/rejection is handled by navigator.credentials.create().

All BufferSource objects used in this algorithm MUST be snapshotted when the algorithm begins, to avoid potential synchronization issues. Implementations SHOULD get a copy of the bytes held by the buffer source and use that copy for relevant portions of the algorithm.

When this method is invoked, the user agent MUST execute the following algorithm:

  1. Assert: options.publicKey is present.

  2. If sameOriginWithAncestors is false:

    1. If options.mediation is present with the value conditional:

      1. Throw a "NotAllowedError" DOMException

    2. If the relevant global object, as determined by the calling create() implementation, does not have transient activation:

      1. Throw a "NotAllowedError" DOMException.

    3. Consume user activation of the relevant global object.

    4. If the origin that is creating a credential is different from the top-level origin of the relevant global object (i.e., is a different origin than the user can see in the address bar), the client SHOULD make this fact clear to the user.

  3. Let pkOptions be the value of options.publicKey.

  4. If pkOptions.timeout is present, check if its value lies within a reasonable range as defined by the client and if not, correct it to the closest value lying within that range. Set a timer lifetimeTimer to this adjusted value. If pkOptions.timeout is not present, then set lifetimeTimer to a client-specific default.

    See the recommended range and default for a WebAuthn ceremony timeout for guidance on deciding a reasonable range and default for pkOptions.timeout.

    The client SHOULD take cognitive guidelines into considerations regarding timeout for users with special needs.

  5. If the length of pkOptions.user.id is not between 1 and 64 bytes (inclusive) then throw a TypeError.

  6. Let callerOrigin be origin. If callerOrigin is an opaque origin, throw a "NotAllowedError" DOMException.

  7. Let effectiveDomain be the callerOrigin’s effective domain. If effective domain is not a valid domain, then throw a "SecurityError" DOMException.

    Note: An effective domain may resolve to a host, which can be represented in various manners, such as domain, ipv4 address, ipv6 address, opaque host, or empty host. Only the domain format of host is allowed here. This is for simplification and also is in recognition of various issues with using direct IP address identification in concert with PKI-based security.

  8. If pkOptions.rp.id

    is present

    If pkOptions.rp.id is not a registrable domain suffix of and is not equal to effectiveDomain, and if the client

    supports related origin requests
    1. Let rpIdRequested be the value of pkOptions.rp.id.

    2. Run the related origins validation procedure with arguments callerOrigin and rpIdRequested. If the result is false, throw a "SecurityError" DOMException.

    does not support related origin requests

    throw a "SecurityError" DOMException.

    is not present

    Set pkOptions.rp.id to effectiveDomain.

    Note: pkOptions.rp.id represents the caller’s RP ID. The RP ID defaults to being the caller’s origin's effective domain unless the caller has explicitly set pkOptions.rp.id when calling create().

  9. Let credTypesAndPubKeyAlgs be a new list whose items are pairs of PublicKeyCredentialType and a COSEAlgorithmIdentifier.

  10. If pkOptions.pubKeyCredParams’s size

    is zero

    Append the following pairs of PublicKeyCredentialType and COSEAlgorithmIdentifier values to credTypesAndPubKeyAlgs:

    is non-zero

    For each current of pkOptions.pubKeyCredParams:

    1. If current.type does not contain a PublicKeyCredentialType supported by this implementation, then continue.

    2. Let alg be current.alg.

    3. Append the pair of current.type and alg to credTypesAndPubKeyAlgs.

    If credTypesAndPubKeyAlgs is empty, throw a "NotSupportedError" DOMException.

  11. Let clientExtensions be a new map and let authenticatorExtensions be a new map.

  12. If pkOptions.extensions is present, then for each extensionIdclientExtensionInput of pkOptions.extensions:
    1. If extensionId is not supported by this client platform or is not a registration extension, then continue.

    2. Set clientExtensions[extensionId] to clientExtensionInput.

    3. If extensionId is not an authenticator extension, then continue.

    4. Let authenticatorExtensionInput be the (CBOR) result of running extensionId’s client extension processing algorithm on clientExtensionInput. If the algorithm returned an error, continue.

    5. Set authenticatorExtensions[extensionId] to the base64url encoding of authenticatorExtensionInput.

  13. Let collectedClientData be a new CollectedClientData instance whose fields are:

    type

    The string "webauthn.create".

    challenge

    The base64url encoding of pkOptions.challenge.

    origin

    The serialization of callerOrigin.

    crossOrigin

    The inverse of the value of the sameOriginWithAncestors argument passed to this internal method.

    topOrigin

    The serialization of callerOrigin’s top-level origin if the sameOriginWithAncestors argument passed to this internal method is false, else undefined.

  14. Let clientDataJSON be the JSON-compatible serialization of client data constructed from collectedClientData.

  15. Let clientDataHash be the hash of the serialized client data represented by clientDataJSON.

  16. If options.signal is present and aborted, throw the options.signal’s abort reason.

  17. Let issuedRequests be a new ordered set.

  18. Let authenticators represent a value which at any given instant is a set of client platform-specific handles, where each item identifies an authenticator presently available on this client platform at that instant.

    Note: What qualifies an authenticator as "available" is intentionally unspecified; this is meant to represent how authenticators can be hot-plugged into (e.g., via USB) or discovered (e.g., via NFC or Bluetooth) by the client by various mechanisms, or permanently built into the client.

  19. If options.mediation is present with the value conditional:

    1. If the user agent has not recently mediated an authentication, the origin of said authentication is not callerOrigin, or the user does not consent to this type of credential creation, throw a "NotAllowedError" DOMException.

      It is up to the user agent to decide when it believes an authentication ceremony has been completed. That authentication ceremony MAY be performed via other means than the Web Authentication API.

  20. Consider the value of hints and craft the user interface accordingly, as the user-agent sees fit.

  21. Start lifetimeTimer.

  22. While lifetimeTimer has not expired, perform the following actions depending upon lifetimeTimer, and the state and response for each authenticator in authenticators:
    If lifetimeTimer expires,

    For each authenticator in issuedRequests invoke the authenticatorCancel operation on authenticator and remove authenticator from issuedRequests.

    If the user exercises a user agent user-interface option to cancel the process,

    For each authenticator in issuedRequests invoke the authenticatorCancel operation on authenticator and remove authenticator from issuedRequests. Throw a "NotAllowedError" DOMException.

    If options.signal is present and aborted,

    For each authenticator in issuedRequests invoke the authenticatorCancel operation on authenticator and remove authenticator from issuedRequests. Then throw the options.signal’s abort reason.

    If an authenticator becomes available on this client device,

    Note: This includes the case where an authenticator was available upon lifetimeTimer initiation.

    1. This authenticator is now the candidate authenticator.

    2. If pkOptions.authenticatorSelection is present:

      1. If pkOptions.authenticatorSelection.authenticatorAttachment is present and its value is not equal to authenticator’s authenticator attachment modality, continue.

      2. If pkOptions.authenticatorSelection.residentKey

        is present and set to required

        If the authenticator is not capable of storing a client-side discoverable public key credential source, continue.

        is present and set to preferred or discouraged

        No effect.

        is not present

        if pkOptions.authenticatorSelection.requireResidentKey is set to true and the authenticator is not capable of storing a client-side discoverable public key credential source, continue.

      3. If pkOptions.authenticatorSelection.userVerification is set to required and the authenticator is not capable of performing user verification, continue.

    3. Let requireResidentKey be the effective resident key requirement for credential creation, a Boolean value, as follows:

      If pkOptions.authenticatorSelection.residentKey

      is present and set to required

      Let requireResidentKey be true.

      is present and set to preferred

      If the authenticator

      is capable of client-side credential storage modality

      Let requireResidentKey be true.

      is not capable of client-side credential storage modality, or if the client cannot determine authenticator capability,

      Let requireResidentKey be false.

      is present and set to discouraged

      Let requireResidentKey be false.

      is not present

      Let requireResidentKey be the value of pkOptions.authenticatorSelection.requireResidentKey.

    4. Let userVerification be the effective user verification requirement for credential creation, a Boolean value, as follows. If pkOptions.authenticatorSelection.userVerification

      is set to required
      1. If options.mediation is set to conditional and user verification cannot be collected during the ceremony, throw a ConstraintError DOMException.

      2. Let userVerification be true.

      is set to preferred

      If the authenticator

      is capable of user verification

      Let userVerification be true.

      is not capable of user verification

      Let userVerification be false.

      is set to discouraged

      Let userVerification be false.

    5. Let enterpriseAttestationPossible be a Boolean value, as follows. If pkOptions.attestation

      is set to enterprise

      Let enterpriseAttestationPossible be true if the user agent wishes to support enterprise attestation for pkOptions.rp.id (see step 8, above). Otherwise false.

      otherwise

      Let enterpriseAttestationPossible be false.

    6. Let attestationFormats be a list of strings, initialized to the value of pkOptions.attestationFormats.

    7. If pkOptions.attestation

      is set to none

      Set attestationFormats be the single-element list containing the string “none”

    8. Let excludeCredentialDescriptorList be a new list.

    9. For each credential descriptor C in pkOptions.excludeCredentials:

      1. If C.transports is not empty, and authenticator is connected over a transport not mentioned in C.transports, the client MAY continue.

        Note: If the client chooses to continue, this could result in inadvertently registering multiple credentials bound to the same authenticator if the transport hints in C.transports are not accurate. For example, stored transport hints could become inaccurate as a result of software upgrades adding new connectivity options.

      2. Otherwise, Append C to excludeCredentialDescriptorList.

    10. Invoke the authenticatorMakeCredential operation on authenticator with clientDataHash, pkOptions.rp, pkOptions.user, requireResidentKey, userVerification, credTypesAndPubKeyAlgs, excludeCredentialDescriptorList, enterpriseAttestationPossible, attestationFormats, and authenticatorExtensions as parameters.
    11. Append authenticator to issuedRequests.

    If an authenticator ceases to be available on this client device,

    Remove authenticator from issuedRequests.

    If any authenticator returns a status indicating that the user cancelled the operation,
    1. Remove authenticator from issuedRequests.

    2. For each remaining authenticator in issuedRequests invoke the authenticatorCancel operation on authenticator and remove it from issuedRequests.

      Note: Authenticators may return an indication of "the user cancelled the entire operation". How a user agent manifests this state to users is unspecified.

    If any authenticator returns an error status equivalent to "InvalidStateError",
    1. Remove authenticator from issuedRequests.

    2. For each remaining authenticator in issuedRequests invoke the authenticatorCancel operation on authenticator and remove it from issuedRequests.

    3. Throw an "InvalidStateError" DOMException.

    Note: This error status is handled separately because the authenticator returns it only if excludeCredentialDescriptorList identifies a credential bound to the authenticator and the user has consented to the operation. Given this explicit consent, it is acceptable for this case to be distinguishable to the Relying Party.

    If any authenticator returns an error status not equivalent to "InvalidStateError",

    Remove authenticator from issuedRequests.

    Note: This case does not imply user consent for the operation, so details about the error are hidden from the Relying Party in order to prevent leak of potentially identifying information. See § 14.5.1 Registration Ceremony Privacy for details.

    If any authenticator indicates success,
    1. Remove authenticator from issuedRequests. This authenticator is now the selected authenticator.

    2. Let credentialCreationData be a struct whose items are:

      attestationObjectResult

      whose value is the bytes returned from the successful authenticatorMakeCredential operation.

      Note: this value is attObj, as defined in § 6.5.4 Generating an Attestation Object.

      clientDataJSONResult

      whose value is the bytes of clientDataJSON.

      attestationConveyancePreferenceOption

      whose value is the value of pkOptions.attestation.

      clientExtensionResults

      whose value is an AuthenticationExtensionsClientOutputs object containing extension identifierclient extension output entries. The entries are created by running each extension’s client extension processing algorithm to create the client extension outputs, for each client extension in pkOptions.extensions.

    3. Let constructCredentialAlg be an algorithm that takes a global object global, and whose steps are:

      1. If credentialCreationData.attestationConveyancePreferenceOption’s value is

        none

        Replace potentially uniquely identifying information with non-identifying versions of the same:

        1. If the aaguid in the attested credential data is 16 zero bytes, credentialCreationData.attestationObjectResult.fmt is "packed", and "x5c" is absent from credentialCreationData.attestationObjectResult, then self attestation is being used and no further action is needed.

        2. Otherwise:

          1. Set the value of credentialCreationData.attestationObjectResult.fmt to "none", and set the value of credentialCreationData.attestationObjectResult.attStmt to be an empty CBOR map. (See § 8.7 None Attestation Statement Format and § 6.5.4 Generating an Attestation Object).

        indirect

        The client MAY replace the aaguid and attestation statement with a more privacy-friendly and/or more easily verifiable version of the same data (for example, by employing an Anonymization CA).

        direct or enterprise

        Convey the authenticator's AAGUID and attestation statement, unaltered, to the Relying Party.

      2. Let attestationObject be a new ArrayBuffer, created using global’s %ArrayBuffer%, containing the bytes of credentialCreationData.attestationObjectResult’s value.

      3. Let id be attestationObject.authData.attestedCredentialData.credentialId.

      4. Let pubKeyCred be a new PublicKeyCredential object associated with global whose fields are:

        [[identifier]]

        id

        authenticatorAttachment

        The AuthenticatorAttachment value matching the current authenticator attachment modality of authenticator.

        response

        A new AuthenticatorAttestationResponse object associated with global whose fields are:

        clientDataJSON

        A new ArrayBuffer, created using global’s %ArrayBuffer%, containing the bytes of credentialCreationData.clientDataJSONResult.

        attestationObject

        attestationObject

        [[transports]]

        A sequence of zero or more unique DOMStrings, in lexicographical order, that the authenticator is believed to support. The values SHOULD be members of AuthenticatorTransport, but client platforms MUST ignore unknown values.

        If a user agent does not wish to divulge this information it MAY substitute an arbitrary sequence designed to preserve privacy. This sequence MUST still be valid, i.e. lexicographically sorted and free of duplicates. For example, it may use the empty sequence. Either way, in this case the user agent takes the risk that Relying Party behavior may be suboptimal.

        If the user agent does not have any transport information, it SHOULD set this field to the empty sequence.

        Note: How user agents discover transports supported by a given authenticator is outside the scope of this specification, but may include information from an attestation certificate (for example [FIDO-Transports-Ext]), metadata communicated in an authenticator protocol such as CTAP2, or special-case knowledge about a platform authenticator.

        [[clientExtensionsResults]]

        A new ArrayBuffer, created using global’s %ArrayBuffer%, containing the bytes of credentialCreationData.clientExtensionResults.

      5. Return pubKeyCred.

    4. For each remaining authenticator in issuedRequests invoke the authenticatorCancel operation on authenticator and remove it from issuedRequests.

    5. Return constructCredentialAlg and terminate this algorithm.

  23. Throw a "NotAllowedError" DOMException.

During the above process, the user agent SHOULD show some UI to the user to guide them in the process of selecting and authorizing an authenticator. When options.mediation is set to conditional, prominent modal UI should not be shown unless credential creation was previously consented to via means determined by the user agent.

5.1.3.1. Create Request Exceptions

This section is not normative.

WebAuthn Relying Parties can encounter a number of exceptions from a call to navigator.credentials.create(). Some exceptions can have multiple reasons for why they happened, requiring the WebAuthn Relying Parties to infer the actual reason based on their use of WebAuthn.

Note: Exceptions that can be raised during processing of any WebAuthn Extensions, including ones defined outside of this specification, are not listed here.

The following DOMException exceptions can be raised:

AbortError

The ceremony was cancelled by an AbortController. See § 5.6 Abort Operations with AbortSignal and § 1.3.4 Aborting Authentication Operations.

ConstraintError

Either residentKey was set to required and no available authenticator supported resident keys, or userVerification was set to required and no available authenticator could perform user verification.

InvalidStateError

The authenticator used in the ceremony recognized an entry in excludeCredentials after the user consented to registering a credential.

NotSupportedError

No entry in pubKeyCredParams had a type property of public-key, or the authenticator did not support any of the signature algorithms specified in pubKeyCredParams.

SecurityError

The effective domain was not a valid domain, or rp.id was not equal to or a registrable domain suffix of the effective domain. In the latter case, the client does not support related origin requests or the related origins validation procedure failed.

NotAllowedError

A catch-all error covering a wide range of possible reasons, including common ones like the user canceling out of the ceremony. Some of these causes are documented throughout this spec, while others are client-specific.

The following simple exceptions can be raised:

TypeError

The options argument was not a valid CredentialCreationOptions value, or the value of user.id was empty or was longer than 64 bytes.

5.1.4. Use an Existing Credential to Make an Assertion

WebAuthn Relying Parties call navigator.credentials.get({publicKey:..., ...}) to discover and use an existing public key credential, with the user’s consent. Relying Party script optionally specifies some criteria to indicate what public key credential sources are acceptable to it. The client platform locates public key credential sources matching the specified criteria, and guides the user to pick one that the script will be allowed to use. The user may choose to decline the entire interaction even if a public key credential source is present, for example to maintain privacy. If the user picks a public key credential source, the user agent then uses § 6.3.3 The authenticatorGetAssertion Operation to sign a Relying Party-provided challenge and other collected data into an authentication assertion, which is used as a credential.

The navigator.credentials.get() implementation [CREDENTIAL-MANAGEMENT-1] calls PublicKeyCredential.[[CollectFromCredentialStore]]() to collect any credentials that should be available without user mediation (roughly, this specification’s authorization gesture), and if it does not find exactly one of those, it then calls PublicKeyCredential.[[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors) to have the user select a public key credential source.

Since this specification requires an authorization gesture to create any assertions, PublicKeyCredential inherits the default behavior of [[CollectFromCredentialStore]](origin, options, sameOriginWithAncestors), of returning an empty set. PublicKeyCredential's implementation of [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors) is specified in the next section.

In general, the user agent SHOULD show some UI to the user to guide them in selecting and authorizing an authenticator with which to complete the operation. By setting options.mediation to conditional, Relying Parties can indicate that a prominent modal UI should not be shown unless credentials are discovered. The Relying Party SHOULD first use isConditionalMediationAvailable() or getClientCapabilities() to check that the client supports the conditionalGet capability in order to prevent a user-visible error in case this feature is not available.

Any navigator.credentials.get() operation can be aborted by leveraging the AbortController; see DOM § 3.3 Using AbortController and AbortSignal objects in APIs for detailed instructions.

5.1.4.1. PublicKeyCredential’s [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors) Internal Method

This internal method accepts three arguments:

origin

This argument is the relevant settings object's origin, as determined by the calling get() implementation, i.e., CredentialsContainer's Request a Credential abstract operation.

options

This argument is a CredentialRequestOptions object whose options.publicKey member contains a PublicKeyCredentialRequestOptions object specifying the desired attributes of the public key credential to discover.

sameOriginWithAncestors

This argument is a Boolean value which is true if and only if the caller’s environment settings object is same-origin with its ancestors. It is false if caller is cross-origin.

Note: Invocation of this internal method indicates that it was allowed by permissions policy, which is evaluated at the [CREDENTIAL-MANAGEMENT-1] level. See § 5.9 Permissions Policy integration.

Note: This algorithm is synchronous: the Promise resolution/rejection is handled by navigator.credentials.get().

All BufferSource objects used in this algorithm MUST be snapshotted when the algorithm begins, to avoid potential synchronization issues. Implementations SHOULD get a copy of the bytes held by the buffer source and use that copy for relevant portions of the algorithm.

When this method is invoked, the user agent MUST execute the following algorithm:

  1. Assert: options.publicKey is present.

  2. Let pkOptions be the value of options.publicKey.

  3. If options.mediation is present with the value conditional:

    1. Let credentialIdFilter be the value of pkOptions.allowCredentials.

    2. Set pkOptions.allowCredentials to empty.

      Note: This prevents non-discoverable credentials from being used during conditional requests.

    3. Set a timer lifetimeTimer to a value of infinity.

      Note: lifetimeTimer is set to a value of infinity so that the user has the entire lifetime of the Document to interact with any input form control tagged with a "webauthn" autofill detail token. For example, upon the user clicking in such an input field, the user agent can render a list of discovered credentials for the user to select from, and perhaps also give the user the option to "try another way".

  4. Else:

    1. Let credentialIdFilter be an empty list.

    2. If pkOptions.timeout is present, check if its value lies within a reasonable range as defined by the client and if not, correct it to the closest value lying within that range. Set a timer lifetimeTimer to this adjusted value. If pkOptions.timeout is not present, then set lifetimeTimer to a client-specific default.

      See the recommended range and default for a WebAuthn ceremony timeout for guidance on deciding a reasonable range and default for pkOptions.timeout.

      The user agent SHOULD take cognitive guidelines into considerations regarding timeout for users with special needs.

  5. Let callerOrigin be origin. If callerOrigin is an opaque origin, throw a "NotAllowedError" DOMException.

  6. Let effectiveDomain be the callerOrigin’s effective domain. If effective domain is not a valid domain, then throw a "SecurityError" DOMException.

    Note: An effective domain may resolve to a host, which can be represented in various manners, such as domain, ipv4 address, ipv6 address, opaque host, or empty host. Only the domain format of host is allowed here. This is for simplification and also is in recognition of various issues with using direct IP address identification in concert with PKI-based security.

  7. If pkOptions.rpId
    is present

    If pkOptions.rpId is not a registrable domain suffix of and is not equal to effectiveDomain, and if the client

    supports related origin requests
    1. Let rpIdRequested be the value of pkOptions.rpId

    2. Run the related origins validation procedure with arguments callerOrigin and rpIdRequested. If the result is false, throw a "SecurityError" DOMException.

    does not support related origin requests

    throw a "SecurityError" DOMException.

    is not present

    Set pkOptions.rpId to effectiveDomain.

    Note: rpId represents the caller’s RP ID. The RP ID defaults to being the caller’s origin's effective domain unless the caller has explicitly set pkOptions.rpId when calling get().

  8. Let clientExtensions be a new map and let authenticatorExtensions be a new map.

  9. If pkOptions.extensions is present, then for each extensionIdclientExtensionInput of pkOptions.extensions:

    1. If extensionId is not supported by this client platform or is not an authentication extension, then continue.

    2. Set clientExtensions[extensionId] to clientExtensionInput.

    3. If extensionId is not an authenticator extension, then continue.

    4. Let authenticatorExtensionInput be the (CBOR) result of running extensionId’s client extension processing algorithm on clientExtensionInput. If the algorithm returned an error, continue.

    5. Set authenticatorExtensions[extensionId] to the base64url encoding of authenticatorExtensionInput.

  10. Let collectedClientData be a new CollectedClientData instance whose fields are:

    type

    The string "webauthn.get".

    challenge

    The base64url encoding of pkOptions.challenge

    origin

    The serialization of callerOrigin.

    crossOrigin

    The inverse of the value of the sameOriginWithAncestors argument passed to this internal method.

    topOrigin

    The serialization of callerOrigin’s top-level origin if the sameOriginWithAncestors argument passed to this internal method is false, else undefined.

  11. Let clientDataJSON be the JSON-compatible serialization of client data constructed from collectedClientData.

  12. Let clientDataHash be the hash of the serialized client data represented by clientDataJSON.

  13. If options.signal is present and aborted, throw the options.signal’s abort reason.

  14. Let issuedRequests be a new ordered set.

  15. Let savedCredentialIds be a new map.

  16. Let authenticators represent a value which at any given instant is a set of client platform-specific handles, where each item identifies an authenticator presently available on this client platform at that instant.

    Note: What qualifies an authenticator as "available" is intentionally unspecified; this is meant to represent how authenticators can be hot-plugged into (e.g., via USB) or discovered (e.g., via NFC or Bluetooth) by the client by various mechanisms, or permanently built into the client.

  17. Let silentlyDiscoveredCredentials be a new map whose entries are of the form: DiscoverableCredentialMetadataauthenticator.

  18. Consider the value of hints and craft the user interface accordingly, as the user-agent sees fit.

  19. Start lifetimeTimer.

  20. While lifetimeTimer has not expired, perform the following actions depending upon lifetimeTimer, and the state and response for each authenticator in authenticators:

    If lifetimeTimer expires,

    For each authenticator in issuedRequests invoke the authenticatorCancel operation on authenticator and remove authenticator from issuedRequests.

    If the user exercises a user agent user-interface option to cancel the process,

    For each authenticator in issuedRequests invoke the authenticatorCancel operation on authenticator and remove authenticator from issuedRequests. Throw a "NotAllowedError" DOMException.

    If options.signal is present and aborted,

    For each authenticator in issuedRequests invoke the authenticatorCancel operation on authenticator and remove authenticator from issuedRequests. Then throw the options.signal’s abort reason.

    If options.mediation is conditional and the user interacts with an input or textarea form control with an autocomplete attribute whose non-autofill credential type is "webauthn",
    Note: The "webauthn" autofill detail token must appear immediately after the last autofill detail token of type "Normal" or "Contact". For example:
    • "username webauthn"

    • "current-password webauthn"

    1. If silentlyDiscoveredCredentials is not empty:

      1. Prompt the user to optionally select a DiscoverableCredentialMetadata from silentlyDiscoveredCredentials. The prompt SHOULD display values from the otherUI of each DiscoverableCredentialMetadata, such as name and displayName.

        Let credentialMetadata be the DiscoverableCredentialMetadata chosen by the user, if any.

      2. If the user selects a credentialMetadata,

        1. Let publicKeyOptions be a temporary copy of pkOptions.

        2. Let authenticator be the value of silentlyDiscoveredCredentials[credentialMetadata].

        3. Set publicKeyOptions.allowCredentials to be a list containing a single PublicKeyCredentialDescriptor item whose id's value is set to credentialMetadata’s id's value and whoseid value is set to credentialMetadata’s type.

        4. Execute the issuing a credential request to an authenticator algorithm with authenticator, savedCredentialIds, publicKeyOptions, rpId, clientDataHash, and authenticatorExtensions.

          If this returns false, continue.

        5. Append authenticator to issuedRequests.

    If options.mediation is not conditional, issuedRequests is empty, pkOptions.allowCredentials is not empty, and no authenticator will become available for any public key credentials therein,

    Indicate to the user that no eligible credential could be found. When the user acknowledges the dialog, throw a "NotAllowedError" DOMException.

    Note: One way a client platform can determine that no authenticator will become available is by examining the transports members of the present PublicKeyCredentialDescriptor items of pkOptions.allowCredentials, if any. For example, if all PublicKeyCredentialDescriptor items list only internal, but all platform authenticators have been tried, then there is no possibility of satisfying the request. Alternatively, all PublicKeyCredentialDescriptor items may list transports that the client platform does not support.

    If an authenticator becomes available on this client device,

    Note: This includes the case where an authenticator was available upon lifetimeTimer initiation.

    1. If options.mediation is conditional and the authenticator supports the silentCredentialDiscovery operation:

      1. Let collectedDiscoveredCredentialMetadata be the result of invoking the silentCredentialDiscovery operation on authenticator with rpId as parameter.

      2. For each credentialMetadata of collectedDiscoveredCredentialMetadata:

        1. If credentialIdFilter is empty or credentialIdFilter contains an item whose id's value is set to credentialMetadata’s id, set silentlyDiscoveredCredentials[credentialMetadata] to authenticator.

          Note: A request will be issued to this authenticator upon user selection of a credential via interaction with a particular UI context (see here for details).

    2. Else:

      1. Execute the issuing a credential request to an authenticator algorithm with authenticator, savedCredentialIds, pkOptions, rpId, clientDataHash, and authenticatorExtensions.

        If this returns false, continue.

        Note: This branch is taken if options.mediation is conditional and the authenticator does not support the silentCredentialDiscovery operation to allow use of such authenticators during a conditional user mediation request.

      2. Append authenticator to issuedRequests.

    If an authenticator ceases to be available on this client device,

    Remove authenticator from issuedRequests.

    If any authenticator returns a status indicating that the user cancelled the operation,
    1. Remove authenticator from issuedRequests.

    2. For each remaining authenticator in issuedRequests invoke the authenticatorCancel operation on authenticator and remove it from issuedRequests.

      Note: Authenticators may return an indication of "the user cancelled the entire operation". How a user agent manifests this state to users is unspecified.

    If any authenticator returns an error status,

    Remove authenticator from issuedRequests.

    If any authenticator indicates success,
    1. Remove authenticator from issuedRequests.

    2. Let assertionCreationData be a struct whose items are:

      credentialIdResult

      If savedCredentialIds[authenticator] exists, set the value of credentialIdResult to be the bytes of savedCredentialIds[authenticator]. Otherwise, set the value of credentialIdResult to be the bytes of the credential ID returned from the successful authenticatorGetAssertion operation, as defined in § 6.3.3 The authenticatorGetAssertion Operation.

      clientDataJSONResult

      whose value is the bytes of clientDataJSON.

      authenticatorDataResult

      whose value is the bytes of the authenticator data returned by the authenticator.

      signatureResult

      whose value is the bytes of the signature value returned by the authenticator.

      userHandleResult

      If the authenticator returned a user handle, set the value of userHandleResult to be the bytes of the returned user handle. Otherwise, set the value of userHandleResult to null.

      clientExtensionResults

      whose value is an AuthenticationExtensionsClientOutputs object containing extension identifierclient extension output entries. The entries are created by running each extension’s client extension processing algorithm to create the client extension outputs, for each client extension in pkOptions.extensions.

    3. If credentialIdFilter is not empty and credentialIdFilter does not contain an item whose id's value is set to the value of credentialIdResult, continue.

    4. If credentialIdFilter is empty and userHandleResult is null, continue.

    5. Let settings be the current settings object. Let global be settingsglobal object.

    6. Let pubKeyCred be a new PublicKeyCredential object associated with global whose fields are:

      [[identifier]]

      A new ArrayBuffer, created using global’s %ArrayBuffer%, containing the bytes of assertionCreationData.credentialIdResult.

      authenticatorAttachment

      The AuthenticatorAttachment value matching the current authenticator attachment modality of authenticator.

      response

      A new AuthenticatorAssertionResponse object associated with global whose fields are:

      clientDataJSON

      A new ArrayBuffer, created using global’s %ArrayBuffer%, containing the bytes of assertionCreationData.clientDataJSONResult.

      authenticatorData

      A new ArrayBuffer, created using global’s %ArrayBuffer%, containing the bytes of assertionCreationData.authenticatorDataResult.

      signature

      A new ArrayBuffer, created using global’s %ArrayBuffer%, containing the bytes of assertionCreationData.signatureResult.

      userHandle

      If assertionCreationData.userHandleResult is null, set this field to null. Otherwise, set this field to a new ArrayBuffer, created using global’s %ArrayBuffer%, containing the bytes of assertionCreationData.userHandleResult.

      [[clientExtensionsResults]]

      A new ArrayBuffer, created using global’s %ArrayBuffer%, containing the bytes of assertionCreationData.clientExtensionResults.

    7. For each remaining authenticator in issuedRequests invoke the authenticatorCancel operation on authenticator and remove it from issuedRequests.

    8. Return pubKeyCred and terminate this algorithm.

  21. Throw a "NotAllowedError" DOMException.

5.1.4.2. Issuing a Credential Request to an Authenticator

This sub-algorithm of [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors) encompasses the specific UI context-independent steps necessary for requesting a credential from a given authenticator, using given PublicKeyCredentialRequestOptions. It is called by [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors) from various points depending on which user mediation the present authentication ceremony is subject to (e.g.: conditional mediation).

This algorithm accepts the following arguments:

authenticator

A client platform-specific handle identifying an authenticator presently available on this client platform.

savedCredentialIds

A map containing authenticatorcredential ID. This argument will be modified in this algorithm.

pkOptions

This argument is a PublicKeyCredentialRequestOptions object specifying the desired attributes of the public key credential to discover.

rpId

The request RP ID.

clientDataHash

The hash of the serialized client data represented by clientDataJSON.

authenticatorExtensions

A map containing extension identifiers to the base64url encoding of the client extension processing output for authenticator extensions.

This algorithm returns false if the client determines that the authenticator is not capable of handling the request, or true if the request was issued successfully.

The steps for issuing a credential request to an authenticator are as follows:

  1. If pkOptions.userVerification is set to required and the authenticator is not capable of performing user verification, return false.

  2. Let userVerification be the effective user verification requirement for assertion, a Boolean value, as follows. If pkOptions.userVerification

    is set to required

    Let userVerification be true.

    is set to preferred

    If the authenticator

    is capable of user verification

    Let userVerification be true.

    is not capable of user verification

    Let userVerification be false.

    is set to discouraged

    Let userVerification be false.

  3. If pkOptions.allowCredentials

    is not empty
    1. Let allowCredentialDescriptorList be a new list.

    2. Execute a client platform-specific procedure to determine which, if any, public key credentials described by pkOptions.allowCredentials are bound to this authenticator, by matching with rpId, pkOptions.allowCredentials.id, and pkOptions.allowCredentials.type. Set allowCredentialDescriptorList to this filtered list.

    3. If allowCredentialDescriptorList is empty, return false.

    4. Let distinctTransports be a new ordered set.

    5. If allowCredentialDescriptorList has exactly one value, set savedCredentialIds[authenticator] to allowCredentialDescriptorList[0].id’s value (see here in § 6.3.3 The authenticatorGetAssertion Operation for more information).

    6. For each credential descriptor C in allowCredentialDescriptorList, append each value, if any, of C.transports to distinctTransports.

      Note: This will aggregate only distinct values of transports (for this authenticator) in distinctTransports due to the properties of ordered sets.

    7. If distinctTransports

      is not empty

      The client selects one transport value from distinctTransports, possibly incorporating local configuration knowledge of the appropriate transport to use with authenticator in making its selection.

      Then, using transport, invoke the authenticatorGetAssertion operation on authenticator, with rpId, clientDataHash, allowCredentialDescriptorList, userVerification, and authenticatorExtensions as parameters.

      is empty

      Using local configuration knowledge of the appropriate transport to use with authenticator, invoke the authenticatorGetAssertion operation on authenticator with rpId, clientDataHash, allowCredentialDescriptorList, userVerification, and authenticatorExtensions as parameters.

    is empty

    Using local configuration knowledge of the appropriate transport to use with authenticator, invoke the authenticatorGetAssertion operation on authenticator with rpId, clientDataHash, userVerification, and authenticatorExtensions as parameters.

    Note: In this case, the Relying Party did not supply a list of acceptable credential descriptors. Thus, the authenticator is being asked to exercise any credential it may possess that is scoped to the Relying Party, as identified by rpId.

  4. Return true.

5.1.4.3. Get Request Exceptions

This section is not normative.

WebAuthn Relying Parties can encounter a number of exceptions from a call to navigator.credentials.get(). Some exceptions can have multiple reasons for why they happened, requiring the WebAuthn Relying Parties to infer the actual reason based on their use of WebAuthn.

Note: Exceptions that can be raised during processing of any WebAuthn Extensions, including ones defined outside of this specification, are not listed here.

The following DOMException exceptions can be raised:

AbortError

The ceremony was cancelled by an AbortController. See § 5.6 Abort Operations with AbortSignal and § 1.3.4 Aborting Authentication Operations.

SecurityError

The effective domain was not a valid domain, or rp.id was not equal to or a registrable domain suffix of the effective domain. In the latter case, the client does not support related origin requests or the related origins validation procedure failed.

NotAllowedError

A catch-all error covering a wide range of possible reasons, including common ones like the user canceling out of the ceremony. Some of these causes are documented throughout this spec, while others are client-specific.

The following simple exceptions can be raised:

TypeError

The options argument was not a valid CredentialRequestOptions value.

5.1.5. Store an Existing Credential - PublicKeyCredential’s [[Store]](credential, sameOriginWithAncestors) Internal Method

The [[Store]](credential, sameOriginWithAncestors) method is not supported for Web Authentication’s PublicKeyCredential type, so its implementation of the [[Store]](credential, sameOriginWithAncestors) internal method always throws an error.

Note: This algorithm is synchronous; the Promise resolution/rejection is handled by navigator.credentials.store().

This internal method accepts two arguments:

credential

This argument is a PublicKeyCredential object.

sameOriginWithAncestors

This argument is a Boolean value which is true if and only if the caller’s environment settings object is same-origin with its ancestors.

When this method is invoked, the user agent MUST execute the following algorithm:

  1. Throw a "NotSupportedError" DOMException.

5.1.6. Availability of User-Verifying Platform Authenticator - PublicKeyCredential’s isUserVerifyingPlatformAuthenticatorAvailable() Method

WebAuthn Relying Parties use this method to determine whether they can create a new credential using a user-verifying platform authenticator. Upon invocation, the client employs a client platform-specific procedure to discover available user-verifying platform authenticators. If any are discovered, the promise is resolved with the value of true. Otherwise, the promise is resolved with the value of false. Based on the result, the Relying Party can take further actions to guide the user to create a credential.

This method has no arguments and returns a Boolean value.

partial interface PublicKeyCredential {
    static Promise<boolean> isUserVerifyingPlatformAuthenticatorAvailable();
};

Note: Invoking this method from a browsing context where the Web Authentication API is "disabled" according to the allowed to use algorithm—i.e., by a permissions policy—will result in the promise being rejected with a DOMException whose name is "NotAllowedError". See also § 5.9 Permissions Policy integration.

5.1.7. Availability of client capabilities - PublicKeyCredential’s getClientCapabilities() Method

WebAuthn Relying Parties use this method to determine the availability of a limited set of client capabilities to offer certain workflows and experiences to users. For example, an RP may offer a sign in button on clients where only hybrid transport is available or where conditional mediation is unavailable (instead of showing a username field).

Upon invocation, the client employs a client platform-specific procedure to discover availablity of these capabilities.

This method has no arguments and returns a record of capability keys to Boolean values.

partial interface PublicKeyCredential {
    static Promise<PublicKeyCredentialClientCapabilities> getClientCapabilities();
};

typedef record<DOMString, boolean> PublicKeyCredentialClientCapabilities;

Keys in PublicKeyCredentialClientCapabilities MUST be sorted in ascending lexicographical order. The set of keys SHOULD contain the set of enumeration values of ClientCapability, but the client MAY omit keys as it deems necessary; see § 14.5.4 Disclosing Client Capabilities.

When the value for a given capability is true, the feature is known to be currently supported by the client. When the value for a given capability is false, the feature is known to be not currently supported by the client. When a capability does not exist as a key, the availability of the client feature is not known.

The set of keys SHOULD also contain a key for each extension implemented by the client, where the key is formed by prefixing the string extension: to the extension identifier. The associated value for each implemented extension SHOULD be true. If getClientCapabilities() is supported by a client, but an extension is not mapped to the value true, then a Relying Party MAY assume that client processing steps for that extension will not be carried out by this client and that the extension MAY not be forwarded to the authenticator.

Note that even if an extension is mapped to true, the authenticator used for any given operation may not support that extension, so Relying Parties MUST NOT assume that the authenticator processing steps for that extension will be performed on that basis.

Note: Invoking this method from a browsing context where the Web Authentication API is "disabled" according to the allowed to use algorithm—i.e., by a permissions policy—will result in the promise being rejected with a DOMException whose name is "NotAllowedError". See also § 5.9 Permissions Policy integration.

5.1.8. Deserialize Registration ceremony options - PublicKeyCredential’s parseCreationOptionsFromJSON() Method

WebAuthn Relying Parties use this method to convert JSON type representations of options for navigator.credentials.create() into PublicKeyCredentialCreationOptions.

Upon invocation, the client MUST convert the options argument into a new, identically-structured PublicKeyCredentialCreationOptions object, using base64url encoding to decode any DOMString attributes in PublicKeyCredentialCreationOptionsJSON that correspond to buffer source type attributes in PublicKeyCredentialCreationOptions. This conversion MUST also apply to any client extension inputs processed by the client.

AuthenticationExtensionsClientInputsJSON MAY include extensions registered in the IANA "WebAuthn Extension Identifiers" registry [IANA-WebAuthn-Registries] but not defined in § 9 WebAuthn Extensions.

If the client encounters any issues parsing any of the JSON type representations then it MUST throw an "EncodingError" DOMException with a description of the incompatible value and terminate the operation.

partial interface PublicKeyCredential {
    static PublicKeyCredentialCreationOptions parseCreationOptionsFromJSON(PublicKeyCredentialCreationOptionsJSON options);
};

dictionary PublicKeyCredentialCreationOptionsJSON {
    required PublicKeyCredentialRpEntity                    rp;
    required PublicKeyCredentialUserEntityJSON              user;
    required Base64URLString                                challenge;
    required sequence<PublicKeyCredentialParameters>        pubKeyCredParams;
    unsigned long                                           timeout;
    sequence<PublicKeyCredentialDescriptorJSON>             excludeCredentials = [];
    AuthenticatorSelectionCriteria                          authenticatorSelection;
    sequence<DOMString>                                     hints = [];
    DOMString                                               attestation = "none";
    sequence<DOMString>                                     attestationFormats = [];
    AuthenticationExtensionsClientInputsJSON                extensions;
};

dictionary PublicKeyCredentialUserEntityJSON {
    required Base64URLString        id;
    required DOMString              name;
    required DOMString              displayName;
};

dictionary PublicKeyCredentialDescriptorJSON {
    required DOMString              type;
    required Base64URLString        id;
    sequence<DOMString>             transports;
};

dictionary AuthenticationExtensionsClientInputsJSON {
};

5.1.9. Deserialize Authentication ceremony options - PublicKeyCredential’s parseRequestOptionsFromJSON() Methods

WebAuthn Relying Parties use this method to convert JSON type representations of options for navigator.credentials.get() into PublicKeyCredentialRequestOptions.

Upon invocation, the client MUST convert the options argument into a new, identically-structured PublicKeyCredentialRequestOptions object, using base64url encoding to decode any DOMString attributes in PublicKeyCredentialRequestOptionsJSON that correspond to buffer source type attributes in PublicKeyCredentialRequestOptions. This conversion MUST also apply to any client extension inputs processed by the client.

AuthenticationExtensionsClientInputsJSON MAY include extensions registered in the IANA "WebAuthn Extension Identifiers" registry [IANA-WebAuthn-Registries] but not defined in § 9 WebAuthn Extensions.

If the client encounters any issues parsing any of the JSON type representations then it MUST throw an "EncodingError" DOMException with a description of the incompatible value and terminate the operation.

partial interface PublicKeyCredential {
    static PublicKeyCredentialRequestOptions parseRequestOptionsFromJSON(PublicKeyCredentialRequestOptionsJSON options);
};

dictionary PublicKeyCredentialRequestOptionsJSON {
    required Base64URLString                                challenge;
    unsigned long                                           timeout;
    DOMString                                               rpId;
    sequence<PublicKeyCredentialDescriptorJSON>             allowCredentials = [];
    DOMString                                               userVerification = "preferred";
    sequence<DOMString>                                     hints = [];
    AuthenticationExtensionsClientInputsJSON                extensions;
};

5.1.10. Signal Credential Changes to the Authenticator - PublicKeyCredential’s signal methods

partial interface PublicKeyCredential {
    static Promise<undefined> signalUnknownCredential(UnknownCredentialOptions options);
    static Promise<undefined> signalAllAcceptedCredentials(AllAcceptedCredentialsOptions options);
    static Promise<undefined> signalCurrentUserDetails(CurrentUserDetailsOptions options);
};

dictionary UnknownCredentialOptions {
    required DOMString                     rpId;
    required Base64URLString               credentialId;
};

dictionary AllAcceptedCredentialsOptions {
    required DOMString                     rpId;
    required Base64URLString               userId;
    required sequence<Base64URLString>     allAcceptedCredentialIds;
};

dictionary CurrentUserDetailsOptions {
    required DOMString                     rpId;
    required Base64URLString               userId;
    required DOMString                     name;
    required DOMString                     displayName;
};

WebAuthn Relying Parties may use these signal methods to inform authenticators of the state of public key credentials, so that incorrect or revoked credentials may be updated, removed, or hidden. Clients provide this functionality opportunistically, since an authenticator may not support updating its credentials map or may not be attached at the time the request is made. Furthermore, in order to avoid revealing information about a user’s credentials without user consent, signal methods do not indicate whether the operation succeeded. A successfully resolved promise only means that the options object was well formed.

Each signal method includes authenticator actions. Authenticators MAY choose to deviate in their authenticator actions from the present specification, e.g. to ignore a change they have a reasonable belief would be contrary to the user’s wish, or to ask the user before making some change. Authenticator actions are thus provided as the recommended way to handle signal methods.

In cases where an authenticator does not have the capability to process an authenticator action, clients MAY choose to use existing infrastructure such as [FIDO-CTAP]'s authenticatorCredentialManagement command to achieve an equivalent effect.

Note: Signal methods intentionally avoid waiting for authenticators to complete executing the authenticator actions. This measure protects users from WebAuthn Relying Parties gaining information about availability of their credentials without user consent based on the timing of the request.

5.1.10.1. Asynchronous RP ID validation algorithm

The Asynchronous RP ID validation algorithm lets signal methods validate RP IDs in parallel. The algorithm takes a DOMString rpId as input and returns a promise that rejects if the validation fails. The steps are:

  1. Let effectiveDomain be the relevant settings object's origin's effective domain. If effectiveDomain is not a valid domain, then return a promise rejected with "SecurityError" DOMException.

  2. If rpId is a registrable domain suffix of or is equal to effectiveDomain, return a promise resolved with undefined.

  3. If the client does not support related origin requests, return a promise rejected with a "SecurityError" DOMException.

  4. Let p be a new promise.

  5. Execute the following steps in parallel:

    1. If the result of running the related origins validation procedure with arguments callerOrigin and rpId is true, then resolve p.

    2. Otherwise, reject p with a "SecurityError" DOMException.

  6. Return p.

5.1.10.2. signalUnknownCredential(options)

The signalUnknownCredential method signals that a credential id was not recognized by the WebAuthn Relying Party, e.g. because it was deleted by the user. Unlike signalAllAcceptedCredentials(options), this method does not require passing the entire list of accepted credential IDs and the userHandle, avoiding a privacy leak to an unauthenticated caller (see § 14.6.3 Privacy leak via credential IDs).

Upon invocation of signalUnknownCredential(options), the client executes these steps:

  1. If the result of base64url decoding options.credentialId is an error, then return a promise rejected with a TypeError.

  2. Let p be the result of executing the Asynchronous RP ID validation algorithm with options.rpId.

  3. Upon fulfillment of p, run the following steps in parallel:

    1. For every authenticator presently available on this client platform, invoke the unknownCredentialId authenticator action with options as input.

  4. Return p.

The unknownCredentialId authenticator action takes an UnknownCredentialOptions options and is as follows:

  1. For each public key credential source credential in the authenticator's credential map:

    1. If the credential’s rpId equals options.rpId and the credential’s id equals the result of base64url decoding options.credentialId, remove credential from the credentials map or employ an authenticator-specific procedure to hide it from future authentication ceremonies.

A user deletes a credential on a WebAuthn Relying Party provided UI. Later, when trying to authenticate to the WebAuthn Relying Party with an empty allowCredentials, the authenticator UI offers them the credential they previously deleted. The user selects that credential. After rejecting the sign-in attempt, the WebAuthn Relying Party runs:

PublicKeyCredential.signalUnknownCredential({
    rpId: "example.com",
    credentialId: "aabbcc"  // credential id the user just tried, base64url
});

The authenticator then deletes or hides the credential from future authentication ceremonies.

5.1.10.3. signalAllAcceptedCredentials(options)

Signals the complete list of credential ids for a given user. WebAuthn Relying Parties SHOULD prefer this method over signalUnknownCredential() when the user is authenticated and therefore there is no privacy leak risk (see § 14.6.3 Privacy leak via credential IDs), since the list offers a full snapshot of a user’s public key credentials and might reflect changes that haven’t yet been reported to currently attached authenticators.

Upon invocation of signalAllAcceptedCredentials(options), the client executes these steps:

  1. If the result of base64url decoding options.userId is an error, then return a promise rejected with a TypeError.

  2. For each credentialId in options.allAcceptedCredentialIds:

    1. If the result of base64url decoding credentialId is an error, then return a promise rejected with a TypeError.

  3. Let p be the result of executing the Asynchronous RP ID validation algorithm with options.rpId.

  4. Upon fulfillment of p, run the following steps in parallel:

    1. For every authenticator presently available on this client platform, invoke the allAcceptedCredentialIds authenticator action with options as input.

  5. Return p.

The allAcceptedCredentialIds authenticator actions take an AllAcceptedCredentialsOptions options and are as follows:

  1. Let userId be result of base64url decoding options.userId.

  2. Assertion: userId is not an error.

  3. Let credential be credentials map[options.rpId, userId].

  4. If credential does not exist, abort these steps.

  5. If options.allAcceptedCredentialIds does NOT contain the result of base64url encoding the credential’s id, then remove credential from the credentials map or employ an authenticator-specific procedure to hide it from future authentication ceremonies.

  6. Else, if credential has been hidden by an authenticator-specific procecure, reverse the action so that credential is present in future authentication ceremonies.

A user has two credentials with credential ids that base64url encode to aa and bb. The user deletes the credential aa on a WebAuthn Relying Party provided UI. The WebAuthn Relying Party runs:

PublicKeyCredential.signalAllAcceptedCredentials({
    rpId: "example.com",
    userId: "aabbcc",  // user handle, base64url.
    allAcceptedCredentialIds: [
        "bb",
    ]
});

If the authenticator is attached at the time of execution, it deletes or hides the credential corresponding to aa from future authentication ceremonies.

Note: Authenticators might not be attached at the time signalAllAcceptedCredentials(options) is executed. Therefore, WebAuthn Relying Parties may choose to run signalAllAcceptedCredentials(options) periodically, e.g. on every sign in.

Note: Credentials not present in allAcceptedCredentialIds will be removed or hidden, potentially irreversibly. Relying parties must exercise care that valid credential IDs are never omitted from the list. If a valid credential ID were accidentally omitted, the relying party should immediately include it in signalAllAcceptedCredentials(options) as soon as possible to "unhide" it, if supported by the authenticator.

Authenticators SHOULD, whenever possible, prefer hiding public key credentials for a period of time instead of permanently removing them, to aid recovery if a WebAuthn Relying Party accidentally omits valid credential IDs from allAcceptedCredentialIds.

5.1.10.4. signalCurrentUserDetails(options)

The signalCurrentUserDetails method signals the user’s current name and displayName.

Upon invocation of signalCurrentUserDetails(options), the client executes these steps:

  1. If the result of base64url decoding options.userId is an error, then return a promise rejected with a TypeError.

  2. Let p be the result of executing the Asynchronous RP ID validation algorithm with options.rpId.

  3. Upon fulfillment of p, run the following steps in parallel:

    1. For every authenticator presently available on this client platform, invoke the currentUserDetails authenticator action with options as input.

  4. Return p.

The currentUserDetails authenticator action takes a CurrentUserDetailsOptions options and is as follows:

  1. Let userId be result of base64url decoding options.userId.

  2. Assertion: userId is not an error.

  3. Let credential be credentials map[options.rpId, userId].

  4. If credential does not exist, abort these steps.

  5. Update the credential’s otherUI to match options.name and options.displayName.

A user updates their name on a WebAuthn Relying Party provided UI. The WebAuthn Relying Party runs:

PublicKeyCredential.signalCurrentUserDetails({
    rpId: "example.com",
    userId: "aabbcc",  // user handle, base64url.
    name: "New user name",
    displayName: "New display name"
});

The authenticator then updates the otherUI of the matching credential.

Note: Authenticators might not be attached at the time signalCurrentUserDetails(options) is executed. Therefore, WebAuthn Relying Parties may choose to run signalCurrentUserDetails(options) periodically, e.g. on every sign in.

5.2. Authenticator Responses (interface AuthenticatorResponse)

Authenticators respond to Relying Party requests by returning an object derived from the AuthenticatorResponse interface:

[SecureContext, Exposed=Window]
interface AuthenticatorResponse {
    [SameObject] readonly attribute ArrayBuffer      clientDataJSON;
};
clientDataJSON, of type ArrayBuffer, readonly

This attribute contains a JSON-compatible serialization of the client data, the hash of which is passed to the authenticator by the client in its call to either create() or get() (i.e., the client data itself is not sent to the authenticator).

5.2.1. Information About Public Key Credential (interface AuthenticatorAttestationResponse)

The AuthenticatorAttestationResponse interface represents the authenticator's response to a client’s request for the creation of a new public key credential. It contains information about the new credential that can be used to identify it for later use, and metadata that can be used by the WebAuthn Relying Party to assess the characteristics of the credential during registration.

[SecureContext, Exposed=Window]
interface AuthenticatorAttestationResponse : AuthenticatorResponse {
    [SameObject] readonly attribute ArrayBuffer      attestationObject;
    sequence<DOMString>                              getTransports();
    ArrayBuffer                                      getAuthenticatorData();
    ArrayBuffer?                                     getPublicKey();
    COSEAlgorithmIdentifier                          getPublicKeyAlgorithm();
};
clientDataJSON

This attribute, inherited from AuthenticatorResponse, contains the JSON-compatible serialization of client data (see § 6.5 Attestation) passed to the authenticator by the client in order to generate this credential. The exact JSON serialization MUST be preserved, as the hash of the serialized client data has been computed over it.

attestationObject, of type ArrayBuffer, readonly

This attribute contains an attestation object, which is opaque to, and cryptographically protected against tampering by, the client. The attestation object contains both authenticator data and an attestation statement. The former contains the AAGUID, a unique credential ID, and the credential public key. The contents of the attestation statement are determined by the attestation statement format used by the authenticator. It also contains any additional information that the Relying Party's server requires to validate the attestation statement, as well as to decode and validate the authenticator data along with the JSON-compatible serialization of client data. For more details, see § 6.5 Attestation, § 6.5.4 Generating an Attestation Object, and Figure 6.

getTransports()

This operation returns the value of [[transports]].

getAuthenticatorData()

This operation returns the authenticator data contained within attestationObject. See § 5.2.1.1 Easily accessing credential data.

getPublicKey()

This operation returns the DER SubjectPublicKeyInfo of the new credential, or null if this is not available. See § 5.2.1.1 Easily accessing credential data.

getPublicKeyAlgorithm()

This operation returns the COSEAlgorithmIdentifier of the new credential. See § 5.2.1.1 Easily accessing credential data.

[[transports]]

This internal slot contains a sequence of zero or more unique DOMStrings in lexicographical order. These values are the transports that the authenticator is believed to support, or an empty sequence if the information is unavailable. The values SHOULD be members of AuthenticatorTransport but Relying Parties SHOULD accept and store unknown values.

5.2.1.1. Easily accessing credential data

Every user of the [[Create]](origin, options, sameOriginWithAncestors) method will need to parse and store the returned credential public key in order to verify future authentication assertions. However, the credential public key is in COSE format [RFC9052], inside the credentialPublicKey member of the attestedCredentialData, inside the authenticator data, inside the attestation object conveyed by AuthenticatorAttestationResponse.attestationObject. Relying Parties wishing to use attestation are obliged to do the work of parsing the attestationObject and obtaining the credential public key because that public key copy is the one the authenticator signed. However, many valid WebAuthn use cases do not require attestation. For those uses, user agents can do the work of parsing, expose the authenticator data directly, and translate the credential public key into a more convenient format.

The getPublicKey() operation thus returns the credential public key as a SubjectPublicKeyInfo. This ArrayBuffer can, for example, be passed to Java’s java.security.spec.X509EncodedKeySpec, .NET’s System.Security.Cryptography.ECDsa.ImportSubjectPublicKeyInfo, or Go’s crypto/x509.ParsePKIXPublicKey.

Use of getPublicKey() does impose some limitations: by using pubKeyCredParams, a Relying Party can negotiate with the authenticator to use public key algorithms that the user agent may not understand. However, if the Relying Party does so, the user agent will not be able to translate the resulting credential public key into SubjectPublicKeyInfo format and the return value of getPublicKey() will be null.

User agents MUST be able to return a non-null value for getPublicKey() when the credential public key has a COSEAlgorithmIdentifier value of:

A SubjectPublicKeyInfo does not include information about the signing algorithm (for example, which hash function to use) that is included in the COSE public key. To provide this, getPublicKeyAlgorithm() returns the COSEAlgorithmIdentifier for the credential public key.

To remove the need to parse CBOR at all in many cases, getAuthenticatorData() returns the authenticator data from attestationObject. The authenticator data contains other fields that are encoded in a binary format. However, helper functions are not provided to access them because Relying Parties already need to extract those fields when getting an assertion. In contrast to credential creation, where signature verification is optional, Relying Parties should always be verifying signatures from an assertion and thus must extract fields from the signed authenticator data. The same functions used there will also serve during credential creation.

Relying Parties SHOULD use feature detection before using these functions by testing the value of 'getPublicKey' in AuthenticatorAttestationResponse.prototype.

Note: getPublicKey() and getAuthenticatorData() were only added in Level 2 of this specification. Relying Parties that require these functions to exist may not interoperate with older user-agents.

5.2.2. Web Authentication Assertion (interface AuthenticatorAssertionResponse)

The AuthenticatorAssertionResponse interface represents an authenticator's response to a client’s request for generation of a new authentication assertion given the WebAuthn Relying Party's challenge and OPTIONAL list of credentials it is aware of. This response contains a cryptographic signature proving possession of the credential private key, and optionally evidence of user consent to a specific transaction.

[SecureContext, Exposed=Window]
interface AuthenticatorAssertionResponse : AuthenticatorResponse {
    [SameObject] readonly attribute ArrayBuffer      authenticatorData;
    [SameObject] readonly attribute ArrayBuffer      signature;
    [SameObject] readonly attribute ArrayBuffer?     userHandle;
};
clientDataJSON

This attribute, inherited from AuthenticatorResponse, contains the JSON-compatible serialization of client data (see § 5.8.1 Client Data Used in WebAuthn Signatures (dictionary CollectedClientData)) passed to the authenticator by the client in order to generate this assertion. The exact JSON serialization MUST be preserved, as the hash of the serialized client data has been computed over it.

authenticatorData, of type ArrayBuffer, readonly

This attribute contains the authenticator data returned by the authenticator. See § 6.1 Authenticator Data.

signature, of type ArrayBuffer, readonly

This attribute contains the raw signature returned from the authenticator. See § 6.3.3 The authenticatorGetAssertion Operation.

userHandle, of type ArrayBuffer, readonly, nullable

This attribute contains the user handle returned from the authenticator, or null if the authenticator did not return a user handle. See § 6.3.3 The authenticatorGetAssertion Operation. The authenticator MUST always return a user handle if the allowCredentials option used in the authentication ceremony is empty, and MAY return one otherwise.

5.3. Parameters for Credential Generation (dictionary PublicKeyCredentialParameters)

dictionary PublicKeyCredentialParameters {
    required DOMString                    type;
    required COSEAlgorithmIdentifier      alg;
};
This dictionary is used to supply additional parameters when creating a new credential.
type, of type DOMString

This member specifies the type of credential to be created. The value SHOULD be a member of PublicKeyCredentialType but client platforms MUST ignore unknown values, ignoring any PublicKeyCredentialParameters with an unknown type.

alg, of type COSEAlgorithmIdentifier

This member specifies the cryptographic signature algorithm with which the newly generated credential will be used, and thus also the type of asymmetric key pair to be generated, e.g., RSA or Elliptic Curve.

Note: we use "alg" as the latter member name, rather than spelling-out "algorithm", because it will be serialized into a message to the authenticator, which may be sent over a low-bandwidth link.

5.4. Options for Credential Creation (dictionary PublicKeyCredentialCreationOptions)

dictionary PublicKeyCredentialCreationOptions {
    required PublicKeyCredentialRpEntity         rp;
    required PublicKeyCredentialUserEntity       user;

    required BufferSource                             challenge;
    required sequence<PublicKeyCredentialParameters>  pubKeyCredParams;

    unsigned long                                timeout;
    sequence<PublicKeyCredentialDescriptor>      excludeCredentials = [];
    AuthenticatorSelectionCriteria               authenticatorSelection;
    sequence<DOMString>                          hints = [];
    DOMString                                    attestation = "none";
    sequence<DOMString>                          attestationFormats = [];
    AuthenticationExtensionsClientInputs         extensions;
};
rp, of type PublicKeyCredentialRpEntity

This member contains a name and an identifier for the Relying Party responsible for the request.

Its value’s name member is REQUIRED. See § 5.4.1 Public Key Entity Description (dictionary PublicKeyCredentialEntity) for further details.

Its value’s id member specifies the RP ID the credential should be scoped to. If omitted, its value will be the CredentialsContainer object’s relevant settings object's origin's effective domain. See § 5.4.2 Relying Party Parameters for Credential Generation (dictionary PublicKeyCredentialRpEntity) for further details.

user, of type PublicKeyCredentialUserEntity

This member contains names and an identifier for the user account performing the registration.

Its value’s name, displayName and id members are REQUIRED. id can be returned as the userHandle in some future authentication ceremonies, and is used to overwrite existing discoverable credentials that have the same rp.id and user.id on the same authenticator. name and displayName MAY be used by the authenticator and client in future authentication ceremonies to help the user select a credential, but are not returned to the Relying Party as a result of future authentication ceremonies

For further details, see § 5.4.1 Public Key Entity Description (dictionary PublicKeyCredentialEntity) and § 5.4.3 User Account Parameters for Credential Generation (dictionary PublicKeyCredentialUserEntity).

challenge, of type BufferSource

This member specifies a challenge that the authenticator signs, along with other data, when producing an attestation object for the newly created credential. See the § 13.4.3 Cryptographic Challenges security consideration.

pubKeyCredParams, of type sequence<PublicKeyCredentialParameters>

This member lists the key types and signature algorithms the Relying Party supports, ordered from most preferred to least preferred. Duplicates are allowed but effectively ignored. The client and authenticator make a best-effort to create a credential of the most preferred type possible. If none of the listed types can be created, the create() operation fails.

Relying Parties that wish to support a wide range of authenticators SHOULD include at least the following COSEAlgorithmIdentifier values:

  • -8 (Ed25519)

  • -7 (ES256)

  • -257 (RS256)

Additional signature algorithms can be included as needed.

timeout, of type unsigned long

This OPTIONAL member specifies a time, in milliseconds, that the Relying Party is willing to wait for the call to complete. This is treated as a hint, and MAY be overridden by the client.

excludeCredentials, of type sequence<PublicKeyCredentialDescriptor>, defaulting to []

The Relying Party SHOULD use this OPTIONAL member to list any existing credentials mapped to this user account (as identified by user.id). This ensures that the new credential is not created on an authenticator that already contains a credential mapped to this user account. If it would be, the client is requested to instead guide the user to use a different authenticator, or return an error if that fails.

authenticatorSelection, of type AuthenticatorSelectionCriteria

The Relying Party MAY use this OPTIONAL member to specify capabilities and settings that the authenticator MUST or SHOULD satisfy to participate in the create() operation. See § 5.4.4 Authenticator Selection Criteria (dictionary AuthenticatorSelectionCriteria).

hints, of type sequence<DOMString>, defaulting to []

This OPTIONAL member contains zero or more elements from PublicKeyCredentialHint to guide the user agent in interacting with the user. Note that the elements have type DOMString despite being taken from that enumeration. See § 2.1.1 Enumerations as DOMString types.

attestation, of type DOMString, defaulting to "none"

The Relying Party MAY use this OPTIONAL member to specify a preference regarding attestation conveyance. Its value SHOULD be a member of AttestationConveyancePreference. Client platforms MUST ignore unknown values, treating an unknown value as if the member does not exist.

The default value is none.

attestationFormats, of type sequence<DOMString>, defaulting to []

The Relying Party MAY use this OPTIONAL member to specify a preference regarding the attestation statement format used by the authenticator. Values SHOULD be taken from the IANA "WebAuthn Attestation Statement Format Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809]. Values are ordered from most preferred to least preferred. Duplicates are allowed but effectively ignored. This parameter is advisory and the authenticator MAY use an attestation statement not enumerated in this parameter.

The default value is the empty list, which indicates no preference.

extensions, of type AuthenticationExtensionsClientInputs

The Relying Party MAY use this OPTIONAL member to provide client extension inputs requesting additional processing by the client and authenticator. For example, the Relying Party may request that the client returns additional information about the credential that was created.

The extensions framework is defined in § 9 WebAuthn Extensions. Some extensions are defined in § 10 Defined Extensions; consult the IANA "WebAuthn Extension Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809] for an up-to-date list of registered WebAuthn Extensions.

5.4.1. Public Key Entity Description (dictionary PublicKeyCredentialEntity)

The PublicKeyCredentialEntity dictionary describes a user account, or a WebAuthn Relying Party, which a public key credential is associated with or scoped to, respectively.

dictionary PublicKeyCredentialEntity {
    required DOMString    name;
};
name, of type DOMString

A human-palatable name for the entity. Its function depends on what the PublicKeyCredentialEntity represents:

  • [DEPRECATED] When inherited by PublicKeyCredentialRpEntity it is a human-palatable identifier for the Relying Party, intended only for display. For example, "ACME Corporation", "Wonderful Widgets, Inc." or "ОАО Примертех".

    This member is deprecated because many clients do not display it, but it remains a required dictionary member for backwards compatibility. Relying Parties MAY, as a safe default, set this equal to the RP ID.

  • When inherited by PublicKeyCredentialUserEntity, it is a human-palatable identifier for a user account. This identifier is the primary value displayed to users by Clients to help users understand with which user account a credential is associated.

    Examples of suitable values for this identifier include, "alexm", "+14255551234", "alex.mueller@example.com", "alex.mueller@example.com (prod-env)", or "alex.mueller@example.com (ОАО Примертех)".

When clients, client platforms, or authenticators display a name's value, they should always use UI elements to provide a clear boundary around the displayed value, and not allow overflow into other elements [css-overflow-3].

When storing a name member’s value, the value MAY be truncated as described in § 6.4.1 String Truncation using a size limit greater than or equal to 64 bytes.

5.4.2. Relying Party Parameters for Credential Generation (dictionary PublicKeyCredentialRpEntity)

The PublicKeyCredentialRpEntity dictionary is used to supply additional Relying Party attributes when creating a new credential.

dictionary PublicKeyCredentialRpEntity : PublicKeyCredentialEntity {
    DOMString      id;
};
id, of type DOMString

A unique identifier for the Relying Party entity, which sets the RP ID.

5.4.3. User Account Parameters for Credential Generation (dictionary PublicKeyCredentialUserEntity)

The PublicKeyCredentialUserEntity dictionary is used to supply additional user account attributes when creating a new credential.

dictionary PublicKeyCredentialUserEntity : PublicKeyCredentialEntity {
    required BufferSource   id;
    required DOMString      displayName;
};
id, of type BufferSource

The user handle of the user account. A user handle is an opaque byte sequence with a maximum size of 64 bytes, and is not meant to be displayed to the user.

To ensure secure operation, authentication and authorization decisions MUST be made on the basis of this id member, not the displayName nor name members. See Section 6.1 of [RFC8266].

The user handle MUST NOT contain personally identifying information about the user, such as a username or e-mail address; see § 14.6.1 User Handle Contents for details. The user handle MUST NOT be empty.

The user handle SHOULD NOT be a constant value across different user accounts, even for non-discoverable credentials, because some authenticators always create discoverable credentials. Thus a constant user handle would prevent a user from using such an authenticator with more than one user account at the Relying Party.

displayName, of type DOMString

A human-palatable name for the user account, intended only for display. The Relying Party SHOULD let the user choose this, and SHOULD NOT restrict the choice more than necessary. If no suitable or human-palatable name is available, the Relying Party SHOULD set this value to an empty string.

Examples of suitable values for this identifier include, "Alex Müller", "Alex Müller (ACME Co.)" or "田中倫".

When clients, client platforms, or authenticators display a displayName's value, they should always use UI elements to provide a clear boundary around the displayed value, and not allow overflow into other elements [css-overflow-3].

When storing a displayName member’s value, the value MAY be truncated as described in § 6.4.1 String Truncation using a size limit greater than or equal to 64 bytes.

5.4.4. Authenticator Selection Criteria (dictionary AuthenticatorSelectionCriteria)

WebAuthn Relying Parties may use the AuthenticatorSelectionCriteria dictionary to specify their requirements regarding authenticator attributes.

dictionary AuthenticatorSelectionCriteria {
    DOMString                    authenticatorAttachment;
    DOMString                    residentKey;
    boolean                      requireResidentKey = false;
    DOMString                    userVerification = "preferred";
};
authenticatorAttachment, of type DOMString

If this member is present, eligible authenticators are filtered to be only those authenticators attached with the specified authenticator attachment modality (see also § 6.2.1 Authenticator Attachment Modality). If this member is absent, then any attachment modality is acceptable. The value SHOULD be a member of AuthenticatorAttachment but client platforms MUST ignore unknown values, treating an unknown value as if the member does not exist.

See also the authenticatorAttachment member of PublicKeyCredential, which can tell what authenticator attachment modality was used in a successful create() or get() operation.

residentKey, of type DOMString

Specifies the extent to which the Relying Party desires to create a client-side discoverable credential. For historical reasons the naming retains the deprecated “resident” terminology. The value SHOULD be a member of ResidentKeyRequirement but client platforms MUST ignore unknown values, treating an unknown value as if the member does not exist. If no value is given then the effective value is required if requireResidentKey is true or discouraged if it is false or absent.

See ResidentKeyRequirement for the description of residentKey's values and semantics.

requireResidentKey, of type boolean, defaulting to false

This member is retained for backwards compatibility with WebAuthn Level 1 and, for historical reasons, its naming retains the deprecated “resident” terminology for discoverable credentials. Relying Parties SHOULD set it to true if, and only if, residentKey is set to required.

userVerification, of type DOMString, defaulting to "preferred"

This member specifies the Relying Party's requirements regarding user verification for the create() operation. The value SHOULD be a member of UserVerificationRequirement but client platforms MUST ignore unknown values, treating an unknown value as if the member does not exist.

See UserVerificationRequirement for the description of userVerification's values and semantics.

5.4.5. Authenticator Attachment Enumeration (enum AuthenticatorAttachment)

This enumeration’s values describe authenticators' attachment modalities. Relying Parties use this to express a preferred authenticator attachment modality when calling navigator.credentials.create() to create a credential, and clients use this to report the authenticator attachment modality used to complete a registration or authentication ceremony.

enum AuthenticatorAttachment {
    "platform",
    "cross-platform"
};

Note: The AuthenticatorAttachment enumeration is deliberately not referenced, see § 2.1.1 Enumerations as DOMString types.

platform

This value indicates platform attachment.

cross-platform

This value indicates cross-platform attachment.

Note: An authenticator attachment modality selection option is available only in the [[Create]](origin, options, sameOriginWithAncestors) operation. The Relying Party may use it to, for example, ensure the user has a roaming credential for authenticating on another client device; or to specifically register a platform credential for easier reauthentication using a particular client device. The [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors) operation has no authenticator attachment modality selection option. The client and user will use whichever credential is available and convenient at the time, subject to the allowCredentials option.

5.4.6. Resident Key Requirement Enumeration (enum ResidentKeyRequirement)

enum ResidentKeyRequirement {
    "discouraged",
    "preferred",
    "required"
};

Note: The ResidentKeyRequirement enumeration is deliberately not referenced, see § 2.1.1 Enumerations as DOMString types.

This enumeration’s values describe the Relying Party's requirements for client-side discoverable credentials (formerly known as resident credentials or resident keys):

discouraged

The Relying Party prefers creating a server-side credential, but will accept a client-side discoverable credential. The client and authenticator SHOULD create a server-side credential if possible.

Note: A Relying Party cannot require that a created credential is a server-side credential and the Credential Properties Extension may not return a value for the rk property. Because of this, it may be the case that it does not know if a credential is a server-side credential or not and thus does not know whether creating a second credential with the same user handle will evict the first.

preferred

The Relying Party strongly prefers creating a client-side discoverable credential, but will accept a server-side credential. The client and authenticator SHOULD create a discoverable credential if possible. For example, the client SHOULD guide the user through setting up user verification if needed to create a discoverable credential. This takes precedence over the setting of userVerification.

required

The Relying Party requires a client-side discoverable credential. The client MUST return an error if a client-side discoverable credential cannot be created.

Note: The Relying Party can seek information on whether or not the authenticator created a client-side discoverable credential using the resident key credential property of the Credential Properties Extension. This is useful when values of discouraged or preferred are used for options.authenticatorSelection.residentKey, because in those cases it is possible for an authenticator to create either a client-side discoverable credential or a server-side credential.

5.4.7. Attestation Conveyance Preference Enumeration (enum AttestationConveyancePreference)

WebAuthn Relying Parties may use AttestationConveyancePreference to specify their preference regarding attestation conveyance during credential generation.

enum AttestationConveyancePreference {
    "none",
    "indirect",
    "direct",
    "enterprise"
};

Note: The AttestationConveyancePreference enumeration is deliberately not referenced, see § 2.1.1 Enumerations as DOMString types.

none

The Relying Party is not interested in authenticator attestation. For example, in order to potentially avoid having to obtain user consent to relay identifying information to the Relying Party, or to save a roundtrip to an Attestation CA or Anonymization CA. If the authenticator generates an attestation statement that is not a self attestation, the client will replace it with a None attestation statement.

This is the default, and unknown values fall back to the behavior of this value.

indirect

The Relying Party wants to receive a verifiable attestation statement, but allows the client to decide how to obtain such an attestation statement. The client MAY replace an authenticator-generated attestation statement with one generated by an Anonymization CA, in order to protect the user’s privacy, or to assist Relying Parties with attestation verification in a heterogeneous ecosystem.

Note: There is no guarantee that the Relying Party will obtain a verifiable attestation statement in this case. For example, in the case that the authenticator employs self attestation and the client passes the attestation statement through unmodified.

direct

The Relying Party wants to receive the attestation statement as generated by the authenticator.

enterprise

The Relying Party wants to receive an enterprise attestation, which is an attestation statement that may include information which uniquely identifies the authenticator. This is intended for controlled deployments within an enterprise where the organization wishes to tie registrations to specific authenticators. User agents MUST NOT provide such an attestation unless the user agent or authenticator configuration permits it for the requested RP ID.

If permitted, the user agent SHOULD signal to the authenticator (at invocation time) that enterprise attestation is requested, and convey the resulting AAGUID and attestation statement, unaltered, to the Relying Party.

5.5. Options for Assertion Generation (dictionary PublicKeyCredentialRequestOptions)

The PublicKeyCredentialRequestOptions dictionary supplies get() with the data it needs to generate an assertion. Its challenge member MUST be present, while its other members are OPTIONAL.

dictionary PublicKeyCredentialRequestOptions {
    required BufferSource                challenge;
    unsigned long                        timeout;
    DOMString                            rpId;
    sequence<PublicKeyCredentialDescriptor> allowCredentials = [];
    DOMString                            userVerification = "preferred";
    sequence<DOMString>                  hints = [];
    AuthenticationExtensionsClientInputs extensions;
};
challenge, of type BufferSource

This member specifies a challenge that the authenticator signs, along with other data, when producing an authentication assertion. See the § 13.4.3 Cryptographic Challenges security consideration.

timeout, of type unsigned long

This OPTIONAL member specifies a time, in milliseconds, that the Relying Party is willing to wait for the call to complete. The value is treated as a hint, and MAY be overridden by the client.

rpId, of type DOMString

This OPTIONAL member specifies the RP ID claimed by the Relying Party. The client MUST verify that the Relying Party's origin matches the scope of this RP ID. The authenticator MUST verify that this RP ID exactly equals the rpId of the credential to be used for the authentication ceremony.

If not specified, its value will be the CredentialsContainer object’s relevant settings object's origin's effective domain.

allowCredentials, of type sequence<PublicKeyCredentialDescriptor>, defaulting to []

This OPTIONAL member is used by the client to find authenticators eligible for this authentication ceremony. It can be used in two ways:

If not empty, the client MUST return an error if none of the listed credentials can be used.

The list is ordered in descending order of preference: the first item in the list is the most preferred credential, and the last is the least preferred.

userVerification, of type DOMString, defaulting to "preferred"

This OPTIONAL member specifies the Relying Party's requirements regarding user verification for the get() operation. The value SHOULD be a member of UserVerificationRequirement but client platforms MUST ignore unknown values, treating an unknown value as if the member does not exist. Eligible authenticators are filtered to only those capable of satisfying this requirement.

See UserVerificationRequirement for the description of userVerification's values and semantics.

hints, of type sequence<DOMString>, defaulting to []

This OPTIONAL member contains zero or more elements from PublicKeyCredentialHint to guide the user agent in interacting with the user. Note that the elements have type DOMString despite being taken from that enumeration. See § 2.1.1 Enumerations as DOMString types.

extensions, of type AuthenticationExtensionsClientInputs

The Relying Party MAY use this OPTIONAL member to provide client extension inputs requesting additional processing by the client and authenticator.

The extensions framework is defined in § 9 WebAuthn Extensions. Some extensions are defined in § 10 Defined Extensions; consult the IANA "WebAuthn Extension Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809] for an up-to-date list of registered WebAuthn Extensions.

5.6. Abort Operations with AbortSignal

Developers are encouraged to leverage the AbortController to manage the [[Create]](origin, options, sameOriginWithAncestors) and [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors) operations. See DOM § 3.3 Using AbortController and AbortSignal objects in APIs section for detailed instructions.

Note: DOM § 3.3 Using AbortController and AbortSignal objects in APIs section specifies that web platform APIs integrating with the AbortController must reject the promise immediately once the AbortSignal is aborted. Given the complex inheritance and parallelization structure of the [[Create]](origin, options, sameOriginWithAncestors) and [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors) methods, the algorithms for the two APIs fulfills this requirement by checking the aborted property in three places. In the case of [[Create]](origin, options, sameOriginWithAncestors), the aborted property is checked first in Credential Management 1 § 2.5.4 Create a Credential immediately before calling [[Create]](origin, options, sameOriginWithAncestors), then in § 5.1.3 Create a New Credential - PublicKeyCredential’s [[Create]](origin, options, sameOriginWithAncestors) Internal Method right before authenticator sessions start, and finally during authenticator sessions. The same goes for [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors).

The visibility and focus state of the Window object determines whether the [[Create]](origin, options, sameOriginWithAncestors) and [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors) operations should continue. When the Window object associated with the Document loses focus, [[Create]](origin, options, sameOriginWithAncestors) and [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors) operations SHOULD be aborted.

5.7. WebAuthn Extensions Inputs and Outputs

The subsections below define the data types used for conveying WebAuthn extension inputs and outputs.

Note: Authenticator extension outputs are conveyed as a part of authenticator data (see Table 1).

Note: The types defined below — AuthenticationExtensionsClientInputs and AuthenticationExtensionsClientOutputs — are applicable to both registration extensions and authentication extensions. The "Authentication..." portion of their names should be regarded as meaning "WebAuthentication..."

5.7.1. Authentication Extensions Client Inputs (dictionary AuthenticationExtensionsClientInputs)

dictionary AuthenticationExtensionsClientInputs {
};

This is a dictionary containing the client extension input values for zero or more WebAuthn Extensions.

5.7.2. Authentication Extensions Client Outputs (dictionary AuthenticationExtensionsClientOutputs)

dictionary AuthenticationExtensionsClientOutputs {
};

This is a dictionary containing the client extension output values for zero or more WebAuthn Extensions.

5.7.3. Authentication Extensions Authenticator Inputs (CDDL type AuthenticationExtensionsAuthenticatorInputs)

AuthenticationExtensionsAuthenticatorInputs = {
  * $$extensionInput
} .within { * tstr => any }

The CDDL type AuthenticationExtensionsAuthenticatorInputs defines a CBOR map containing the authenticator extension input values for zero or more WebAuthn Extensions. Extensions can add members as described in § 9.3 Extending Request Parameters.

This type is not exposed to the Relying Party, but is used by the client and authenticator.

5.7.4. Authentication Extensions Authenticator Outputs (CDDL type AuthenticationExtensionsAuthenticatorOutputs)

AuthenticationExtensionsAuthenticatorOutputs = {
  * $$extensionOutput
} .within { * tstr => any }

The CDDL type AuthenticationExtensionsAuthenticatorOutputs defines a CBOR map containing the authenticator extension output values for zero or more WebAuthn Extensions. Extensions can add members as described in § 9.3 Extending Request Parameters.

5.8. Supporting Data Structures

The public key credential type uses certain data structures that are specified in supporting specifications. These are as follows.

5.8.1. Client Data Used in WebAuthn Signatures (dictionary CollectedClientData)

The client data represents the contextual bindings of both the WebAuthn Relying Party and the client. It is a key-value mapping whose keys are strings. Values can be any type that has a valid encoding in JSON. Its structure is defined by the following Web IDL.

Note: The CollectedClientData may be extended in the future. Therefore it’s critical when parsing to be tolerant of unknown keys and of any reordering of the keys. See also § 5.8.1.2 Limited Verification Algorithm.

dictionary CollectedClientData {
    required DOMString           type;
    required DOMString           challenge;
    required DOMString           origin;
    boolean                      crossOrigin;
    DOMString                    topOrigin;
};

dictionary TokenBinding {
    required DOMString status;
    DOMString id;
};

enum TokenBindingStatus { "present", "supported" };
type, of type DOMString

This member contains the string "webauthn.create" when creating new credentials, and "webauthn.get" when getting an assertion from an existing credential. The purpose of this member is to prevent certain types of signature confusion attacks (where an attacker substitutes one legitimate signature for another).

challenge, of type DOMString

This member contains the base64url encoding of the challenge provided by the Relying Party. See the § 13.4.3 Cryptographic Challenges security consideration.

origin, of type DOMString

This member contains the fully qualified origin of the requester, as provided to the authenticator by the client, in the syntax defined by [RFC6454].

crossOrigin, of type boolean

This OPTIONAL member contains the inverse of the sameOriginWithAncestors argument value that was passed into the internal method.

topOrigin, of type DOMString

This OPTIONAL member contains the fully qualified top-level origin of the requester, in the syntax defined by [RFC6454]. It is set only if the call was made from context that is not same-origin with its ancestors, i.e. if crossOrigin is true.

[RESERVED] tokenBinding

This OPTIONAL member contains information about the state of the Token Binding protocol [TokenBinding] used when communicating with the Relying Party. Its absence indicates that the client doesn’t support token binding

Note: While Token Binding was present in Level 1 and Level 2 of WebAuthn, its use is not expected in Level 3. The tokenBinding field is reserved so that it will not be reused for a different purpose.

status, of type DOMString

This member SHOULD be a member of TokenBindingStatus but client platforms MUST ignore unknown values, treating an unknown value as if the tokenBinding member does not exist. When known, this member is one of the following:

supported

Indicates the client supports token binding, but it was not negotiated when communicating with the Relying Party.

present

Indicates token binding was used when communicating with the Relying Party. In this case, the id member MUST be present.

Note: The TokenBindingStatus enumeration is deliberately not referenced, see § 2.1.1 Enumerations as DOMString types.

id, of type DOMString

This member MUST be present if status is present, and MUST be a base64url encoding of the Token Binding ID that was used when communicating with the Relying Party.

Note: Obtaining a Token Binding ID is a client platform-specific operation.

The CollectedClientData structure is used by the client to compute the following quantities:

JSON-compatible serialization of client data

This is the result of performing the JSON-compatible serialization algorithm on the CollectedClientData dictionary.

Hash of the serialized client data

This is the hash (computed using SHA-256) of the JSON-compatible serialization of client data, as constructed by the client.

5.8.1.1. Serialization

The serialization of the CollectedClientData is a subset of the algorithm for JSON-serializing to bytes. I.e. it produces a valid JSON encoding of the CollectedClientData but also provides additional structure that may be exploited by verifiers to avoid integrating a full JSON parser. While verifiers are recommended to perform standard JSON parsing, they may use the more limited algorithm below in contexts where a full JSON parser is too large. This verification algorithm requires only base64url encoding, appending of bytestrings (which could be implemented by writing into a fixed template), and simple conditional checks (assuming that inputs are known not to need escaping).

The serialization algorithm works by appending successive byte strings to an, initially empty, partial result until the complete result is obtained.

  1. Let result be an empty byte string.

  2. Append 0x7b2274797065223a ({"type":) to result.

  3. Append CCDToString(type) to result.

  4. Append 0x2c226368616c6c656e6765223a (,"challenge":) to result.

  5. Append CCDToString(challenge) to result.

  6. Append 0x2c226f726967696e223a (,"origin":) to result.

  7. Append CCDToString(origin) to result.

  8. Append 0x2c2263726f73734f726967696e223a (,"crossOrigin":) to result.

  9. If crossOrigin is not present, or is false:

    1. Append 0x66616c7365 (false) to result.

  10. Otherwise:

    1. Append 0x74727565 (true) to result.

  11. If topOrigin is present:

    1. Append 0x2c22746f704f726967696e223a (,"topOrigin":) to result.

    2. Append CCDToString(topOrigin) to result.

  12. Create a temporary copy of the CollectedClientData and remove the fields type, challenge, origin, crossOrigin (if present), and topOrigin (if present).

  13. If no fields remain in the temporary copy then:

    1. Append 0x7d (}) to result.

  14. Otherwise:

    1. Invoke serialize JSON to bytes on the temporary copy to produce a byte string remainder.

    2. Append 0x2c (,) to result.

    3. Remove the leading byte from remainder.

    4. Append remainder to result.

  15. The result of the serialization is the value of result.

The function CCDToString is used in the above algorithm and is defined as:

  1. Let encoded be an empty byte string.

  2. Append 0x22 (") to encoded.

  3. Invoke ToString on the given object to convert to a string.

  4. For each code point in the resulting string, if the code point:

    is in the set {U+0020, U+0021, U+0023–U+005B, U+005D–U+10FFFF}

    Append the UTF-8 encoding of that code point to encoded.

    is U+0022

    Append 0x5c22 (\") to encoded.

    is U+005C

    Append 0x5c5c (\\) to encoded.

    otherwise

    Append 0x5c75 (\u) to encoded, followed by four, lower-case hex digits that, when interpreted as a base-16 number, represent that code point.

  5. Append 0x22 (") to encoded.

  6. The result of this function is the value of encoded.

5.8.1.2. Limited Verification Algorithm

Verifiers may use the following algorithm to verify an encoded CollectedClientData if they cannot support a full JSON parser:

  1. The inputs to the algorithm are:

    1. A bytestring, clientDataJSON, that contains clientDataJSON — the serialized CollectedClientData that is to be verified.

    2. A string, type, that contains the expected type.

    3. A byte string, challenge, that contains the challenge byte string that was given in the PublicKeyCredentialRequestOptions or PublicKeyCredentialCreationOptions.

    4. A string, origin, that contains the expected origin that issued the request to the user agent.

    5. An optional string, topOrigin, that contains the expected topOrigin that issued the request to the user agent, if available.

    6. A boolean, requireTopOrigin, that is true if, and only if, the verification should fail if topOrigin is defined and the topOrigin attribute is not present in clientDataJSON.

      This means that the verification algorithm is backwards compatible with the JSON-compatible serialization algorithm in Web Authentication Level 2 [webauthn-2-20210408] if, and only if, requireTopOrigin is false.

  2. Let expected be an empty byte string.

  3. Append 0x7b2274797065223a ({"type":) to expected.

  4. Append CCDToString(type) to expected.

  5. Append 0x2c226368616c6c656e6765223a (,"challenge":) to expected.

  6. Perform base64url encoding on challenge to produce a string, challengeBase64.

  7. Append CCDToString(challengeBase64) to expected.

  8. Append 0x2c226f726967696e223a (,"origin":) to expected.

  9. Append CCDToString(origin) to expected.

  10. Append 0x2c2263726f73734f726967696e223a (,"crossOrigin":) to expected.

  11. If topOrigin is defined:

    1. Append 0x74727565 (true) to expected.

    2. If requireTopOrigin is true or if 0x2c22746f704f726967696e223a (,"topOrigin":) is a prefix of the substring of clientDataJSON beginning at the offset equal to the length of expected:

      1. Append 0x2c22746f704f726967696e223a (,"topOrigin":) to expected.

      2. Append CCDToString(topOrigin) to expected.

  12. Otherwise, i.e. topOrigin is not defined:

    1. Append 0x66616c7365 (false) to expected.

  13. If expected is not a prefix of clientDataJSON then the verification has failed.

  14. If clientDataJSON is not at least one byte longer than expected then the verification has failed.

  15. If the byte of clientDataJSON at the offset equal to the length of expected:

    is 0x7d

    The verification is successful.

    is 0x2c

    The verification is successful.

    otherwise

    The verification has failed.

5.8.1.3. Future development

In order to remain compatible with the limited verification algorithm, future versions of this specification must not remove any of the fields type, challenge, origin, crossOrigin, or topOrigin from CollectedClientData. They also must not change the serialization algorithm to change the order in which those fields are serialized, or insert new fields between them.

If additional fields are added to CollectedClientData then verifiers that employ the limited verification algorithm will not be able to consider them until the two algorithms above are updated to include them. Once such an update occurs then the added fields inherit the same limitations as described in the previous paragraph. Such an algorithm update would have to accomodate serializations produced by previous versions. I.e. the verification algorithm would have to handle the fact that a sixth key–value pair may not appear sixth (or at all) if generated by a user agent working from a previous version.

5.8.2. Credential Type Enumeration (enum PublicKeyCredentialType)

enum PublicKeyCredentialType {
    "public-key"
};

Note: The PublicKeyCredentialType enumeration is deliberately not referenced, see § 2.1.1 Enumerations as DOMString types.

This enumeration defines the valid credential types. It is an extension point; values can be added to it in the future, as more credential types are defined. The values of this enumeration are used for versioning the Authentication Assertion and attestation structures according to the type of the authenticator.

Currently one credential type is defined, namely "public-key".

5.8.3. Credential Descriptor (dictionary PublicKeyCredentialDescriptor)

dictionary PublicKeyCredentialDescriptor {
    required DOMString                    type;
    required BufferSource                 id;
    sequence<DOMString>                   transports;
};

This dictionary identifies a specific public key credential. It is used in create() to prevent creating duplicate credentials on the same authenticator, and in get() to determine if and how the credential can currently be reached by the client.

The credential descriptor for a credential record is a subset of the properties of that credential record, and mirrors some fields of the PublicKeyCredential object returned by create() and get().

type, of type DOMString

This member contains the type of the public key credential the caller is referring to. The value SHOULD be a member of PublicKeyCredentialType but client platforms MUST ignore any PublicKeyCredentialDescriptor with an unknown type. However, if all elements are ignored due to unknown type, then that MUST result in an error since an empty allowCredentials is semantically distinct.

This SHOULD be set to the value of the type item of the credential record representing the identified public key credential source. This mirrors the type field of PublicKeyCredential.

id, of type BufferSource

This member contains the credential ID of the public key credential the caller is referring to.

This SHOULD be set to the value of the id item of the credential record representing the identified public key credential source. This mirrors the rawId field of PublicKeyCredential.

transports, of type sequence<DOMString>

This OPTIONAL member contains a hint as to how the client might communicate with the managing authenticator of the public key credential the caller is referring to. The values SHOULD be members of AuthenticatorTransport but client platforms MUST ignore unknown values.

This SHOULD be set to the value of the transports item of the credential record representing the identified public key credential source. This mirrors the response.getTransports() method of the PublicKeyCredential structure created by a create() operation.

5.8.4. Authenticator Transport Enumeration (enum AuthenticatorTransport)

enum AuthenticatorTransport {
    "usb",
    "nfc",
    "ble",
    "smart-card",
    "hybrid",
    "internal"
};

Note: The AuthenticatorTransport enumeration is deliberately not referenced, see § 2.1.1 Enumerations as DOMString types.

Authenticators may implement various transports for communicating with clients. This enumeration defines hints as to how clients might communicate with a particular authenticator in order to obtain an assertion for a specific credential. Note that these hints represent the WebAuthn Relying Party's best belief as to how an authenticator may be reached. A Relying Party will typically learn of the supported transports for a public key credential via getTransports().
usb

Indicates the respective authenticator can be contacted over removable USB.

nfc

Indicates the respective authenticator can be contacted over Near Field Communication (NFC).

ble

Indicates the respective authenticator can be contacted over Bluetooth Smart (Bluetooth Low Energy / BLE).

smart-card

Indicates the respective authenticator can be contacted over ISO/IEC 7816 smart card with contacts.

hybrid

Indicates the respective authenticator can be contacted using a combination of (often separate) data-transport and proximity mechanisms. This supports, for example, authentication on a desktop computer using a smartphone.

internal

Indicates the respective authenticator is contacted using a client device-specific transport, i.e., it is a platform authenticator. These authenticators are not removable from the client device.

5.8.5. Cryptographic Algorithm Identifier (typedef COSEAlgorithmIdentifier)

typedef long COSEAlgorithmIdentifier;
A COSEAlgorithmIdentifier's value is a number identifying a cryptographic algorithm. The algorithm identifiers SHOULD be values registered in the IANA COSE Algorithms registry [IANA-COSE-ALGS-REG], for instance, -7 for "ES256" and -257 for "RS256".

The COSE algorithms registry leaves degrees of freedom to be specified by other parameters in a COSE key. In order to promote interoperability, this specification makes the following additional guarantees of credential public keys:

  1. Keys with algorithm ES256 (-7) MUST specify P-256 (1) as the crv parameter and MUST NOT use the compressed point form.

  2. Keys with algorithm ES384 (-35) MUST specify P-384 (2) as the crv parameter and MUST NOT use the compressed point form.

  3. Keys with algorithm ES512 (-36) MUST specify P-521 (3) as the crv parameter and MUST NOT use the compressed point form.

  4. Keys with algorithm EdDSA (-8) MUST specify Ed25519 (6) as the crv parameter. (These always use a compressed form in COSE.)

These restrictions align with the recommendation in Section 2.1 of [RFC9053].

Note: There are many checks neccessary to correctly implement signature verification using these algorithms. One of these is that, when processing uncompressed elliptic-curve points, implementations should check that the point is actually on the curve. This check is highlighted because it’s judged to be at particular risk of falling through the gap between a cryptographic library and other code.

5.8.6. User Verification Requirement Enumeration (enum UserVerificationRequirement)

enum UserVerificationRequirement {
    "required",
    "preferred",
    "discouraged"
};

A WebAuthn Relying Party may require user verification for some of its operations but not for others, and may use this type to express its needs.

Note: The UserVerificationRequirement enumeration is deliberately not referenced, see § 2.1.1 Enumerations as DOMString types.

required

The Relying Party requires user verification for the operation and will fail the overall ceremony if the response does not have the UV flag set. The client MUST return an error if user verification cannot be performed.

preferred

The Relying Party prefers user verification for the operation if possible, but will not fail the operation if the response does not have the UV flag set.

discouraged

The Relying Party does not want user verification employed during the operation (e.g., in the interest of minimizing disruption to the user interaction flow).

5.8.7. Client Capability Enumeration (enum ClientCapability)

enum ClientCapability {
    "conditionalCreate",
    "conditionalGet",
    "hybridTransport",
    "passkeyPlatformAuthenticator",
    "userVerifyingPlatformAuthenticator",
    "relatedOrigins",
    "signalAllAcceptedCredentials",
    "signalCurrentUserDetails",
    "signalUnknownCredential"
};

This enumeration defines a limited set of client capabilities which a WebAuthn Relying Party may evaluate to offer certain workflows and experiences to users.

Relying Parties may use the getClientCapabilities() method of PublicKeyCredential to obtain a description of available capabilities.

Note: The ClientCapability enumeration is deliberately not referenced, see § 2.1.1 Enumerations as DOMString types.

conditionalCreate

The WebAuthn Client is capable of conditional mediation for registration ceremonies..

See § 5.1.3 Create a New Credential - PublicKeyCredential’s [[Create]](origin, options, sameOriginWithAncestors) Internal Method for more details.

conditionalGet

The WebAuthn Client is capable of conditional mediation for authentication ceremonies.

This capability is equivalent to isConditionalMediationAvailable() resolving to true.

See § 5.1.4 Use an Existing Credential to Make an Assertion for more details.

hybridTransport

The WebAuthn Client supports usage of the hybrid transport.

passkeyPlatformAuthenticator

The WebAuthn Client supports usage of a passkey platform authenticator, locally and/or via hybrid transport.

userVerifyingPlatformAuthenticator

The WebAuthn Client supports usage of a user-verifying platform authenticator.

relatedOrigins

The WebAuthn Client supports Related Origin Requests.

signalAllAcceptedCredentials

The WebAuthn Client supports signalAllAcceptedCredentials().

signalCurrentUserDetails,

The WebAuthn Client supports signalCurrentUserDetails().

signalUnknownCredential

The WebAuthn Client supports signalUnknownCredential().

5.8.8. User-agent Hints Enumeration (enum PublicKeyCredentialHint)

enum PublicKeyCredentialHint {
    "security-key",
    "client-device",
    "hybrid",
};

Note: The PublicKeyCredentialHint enumeration is deliberately not referenced, see § 2.1.1 Enumerations as DOMString types.

WebAuthn Relying Parties may use this enumeration to communicate hints to the user-agent about how a request may be best completed. These hints are not requirements, and do not bind the user-agent, but may guide it in providing the best experience by using contextual information that the Relying Party has about the request. Hints are provided in order of decreasing preference so, if two hints are contradictory, the first one controls. Hints may also overlap: if a more-specific hint is defined a Relying Party may still wish to send less specific ones for user-agents that may not recognise the more specific one. In this case the most specific hint should be sent before the less-specific ones. If the same hint appears more than once, its second and later appearences are ignored.

Hints MAY contradict information contained in credential transports and authenticatorAttachment. When this occurs, the hints take precedence. (Note that transports values are not provided when using discoverable credentials, leaving hints as the only avenue for expressing some aspects of such a request.)

security-key

Indicates that the Relying Party believes that users will satisfy this request with a physical security key. For example, an enterprise Relying Party may set this hint if they have issued security keys to their employees and will only accept those authenticators for registration and authentication.

For compatibility with older user agents, when this hint is used in PublicKeyCredentialCreationOptions, the authenticatorAttachment SHOULD be set to cross-platform.

client-device

Indicates that the Relying Party believes that users will satisfy this request with a platform authenticator attached to the client device.

For compatibility with older user agents, when this hint is used in PublicKeyCredentialCreationOptions, the authenticatorAttachment SHOULD be set to platform.

hybrid

Indicates that the Relying Party believes that users will satisfy this request with general-purpose authenticators such as smartphones. For example, a consumer Relying Party may believe that only a small fraction of their customers possesses dedicated security keys. This option also implies that the local platform authenticator should not be promoted in the UI.

For compatibility with older user agents, when this hint is used in PublicKeyCredentialCreationOptions, the authenticatorAttachment SHOULD be set to cross-platform.

5.9. Permissions Policy integration

This specification defines two policy-controlled features identified by the feature-identifier tokens "publickey-credentials-create" and "publickey-credentials-get". Their default allowlists are both 'self'. [Permissions-Policy]

A Document's permissions policy determines whether any content in that document is allowed to successfully invoke the Web Authentication API, i.e., via navigator.credentials.create({publicKey:..., ...}) or navigator.credentials.get({publicKey:..., ...}) If disabled in any document, no content in the document will be allowed to use the foregoing methods: attempting to do so will return an error.

Note: Algorithms specified in [CREDENTIAL-MANAGEMENT-1] perform the actual permissions policy evaluation. This is because such policy evaluation needs to occur when there is access to the current settings object. The [[Create]](origin, options, sameOriginWithAncestors) and [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors) internal methods do not have such access since they are invoked in parallel by CredentialsContainer's Create a Credential and Request a Credential abstract operations [CREDENTIAL-MANAGEMENT-1].

5.10. Using Web Authentication within iframe elements

The Web Authentication API is disabled by default in cross-origin iframes. To override this default policy and indicate that a cross-origin iframe is allowed to invoke the Web Authentication API's [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors) method, specify the allow attribute on the iframe element and include the publickey-credentials-get feature-identifier token in the allow attribute’s value.

Relying Parties utilizing the WebAuthn API in an embedded context should review § 13.4.2 Visibility Considerations for Embedded Usage regarding UI redressing and its possible mitigations.

By default, Web Authentication requires that the RP ID be equal to the origin's effective domain, or a registrable domain suffix of the origin's effective domain.

This can make deployment challenging for large environments where multiple country-specific domains are in use (e.g. example.com vs example.co.uk vs example.sg), where alternative or brand domains are required (e.g. myexampletravel.com vs examplecruises.com), and/or where platform as a service providers are used to support mobile apps.

WebAuthn Relying Parties can opt in to allowing WebAuthn Clients to enable a credential to be created and used across a limited set of related origins. Such Relying Parties MUST choose a common RP ID to use across all ceremonies from related origins.

A JSON document MUST be hosted at the webauthn well-known URL [RFC8615] for the RP ID, and MUST be served using HTTPS. The JSON document MUST be returned as follows:

For example, for the RP ID example.com:

{
    "origins": [
        "https://example.co.uk",
        "https://example.de",
        "https://example.sg",
        "https://example.net",
        "https://exampledelivery.com",
        "https://exampledelivery.co.uk",
        "https://exampledelivery.de",
        "https://exampledelivery.sg",
        "https://myexamplerewards.com",
        "https://examplecars.com"
    ]
}

WebAuthn Clients supporting this feature MUST support at least five registrable origin labels. Client policy SHOULD define an upper limit to prevent abuse.

Requests to this well-known endpoint by WebAuthn Clients MUST be made without credentials, without a referrer, and using the https: scheme. When following redirects, WebAuthn Clients MUST explicitly require all redirects to also use the https: scheme.

WebAuthn Clients supporting this feature SHOULD include relatedOrigins in their response to getClientCapabilities().

5.11.1. Validating Related Origins

The related origins validation procedure, given arguments callerOrigin and rpIdRequested, is as follows:

  1. Let maxLabels be the maximum number of registrable origin labels allowed by client policy.

  2. Fetch the webauthn well-known URL [RFC8615] for the RP ID rpIdRequested (i.e., https://rpIdRequested/.well-known/webauthn) without credentials, without a referrer and using the https: scheme.

    1. If the fetch fails, the response does not have a content type of application/json, or does not have a status code (after following redirects) of 200, then throw a "SecurityError" DOMException.

    2. If the body of the resource is not a valid JSON object, then throw a "SecurityError" DOMException.

    3. If the value of the origins property of the JSON object is missing, or is not an array of strings, then throw a "SecurityError" DOMException.

  3. Let labelsSeen be a new empty set.

  4. For each originItem of origins:

    1. Let url be the result of running the URL parser with originItem as the input. If that fails, continue.

    2. Let domain be the effective domain of url. If that is null, continue.

    3. Let label be registrable origin label of domain.

    4. If label is empty or null, continue.

    5. If the size of labelsSeen is greater than or equal to maxLabels and labelsSeen does not contain label, continue.

    6. If callerOrigin and url are same origin, return true.

    7. If the size of labelsSeen is less than maxLabels, append label to labelsSeen.

  5. Return false.

6. WebAuthn Authenticator Model

The Web Authentication API implies a specific abstract functional model for a WebAuthn Authenticator. This section describes that authenticator model.

Client platforms MAY implement and expose this abstract model in any way desired. However, the behavior of the client’s Web Authentication API implementation, when operating on the authenticators supported by that client platform, MUST be indistinguishable from the behavior specified in § 5 Web Authentication API.

Note: [FIDO-CTAP] is an example of a concrete instantiation of this model, but it is one in which there are differences in the data it returns and those expected by the WebAuthn API's algorithms. The CTAP2 response messages are CBOR maps constructed using integer keys rather than the string keys defined in this specification for the same objects. The client is expected to perform any needed transformations on such data. The [FIDO-CTAP] specification details the mapping between CTAP2 integer keys and WebAuthn string keys in Section §6. Authenticator API.

For authenticators, this model defines the logical operations that they MUST support, and the data formats that they expose to the client and the WebAuthn Relying Party. However, it does not define the details of how authenticators communicate with the client device, unless they are necessary for interoperability with Relying Parties. For instance, this abstract model does not define protocols for connecting authenticators to clients over transports such as USB or NFC. Similarly, this abstract model does not define specific error codes or methods of returning them; however, it does define error behavior in terms of the needs of the client. Therefore, specific error codes are mentioned as a means of showing which error conditions MUST be distinguishable (or not) from each other in order to enable a compliant and secure client implementation.

Relying Parties may influence authenticator selection, if they deem necessary, by stipulating various authenticator characteristics when creating credentials and/or when generating assertions, through use of credential creation options or assertion generation options, respectively. The algorithms underlying the WebAuthn API marshal these options and pass them to the applicable authenticator operations defined below.

In this abstract model, the authenticator provides key management and cryptographic signatures. It can be embedded in the WebAuthn client or housed in a separate device entirely. The authenticator itself can contain a cryptographic module which operates at a higher security level than the rest of the authenticator. This is particularly important for authenticators that are embedded in the WebAuthn client, as in those cases this cryptographic module (which may, for example, be a TPM) could be considered more trustworthy than the rest of the authenticator.

Each authenticator stores a credentials map, a map from (rpId, userHandle) to public key credential source.

Additionally, each authenticator has an Authenticator Attestation Globally Unique Identifier or AAGUID, which is a 128-bit identifier indicating the type (e.g. make and model) of the authenticator. The AAGUID MUST be chosen by its maker to be identical across all substantially identical authenticators made by that maker, and different (with high probability) from the AAGUIDs of all other types of authenticators. The AAGUID for a given type of authenticator SHOULD be randomly generated to ensure this. The Relying Party MAY use the AAGUID to infer certain properties of the authenticator, such as certification level and strength of key protection, using information from other sources. The Relying Party MAY use the AAGUID to attempt to identify the maker of the authenticator without requesting and verifying attestation, but the AAGUID is not provably authentic without attestation.

The primary function of the authenticator is to provide WebAuthn signatures, which are bound to various contextual data. These data are observed and added at different levels of the stack as a signature request passes from the server to the authenticator. In verifying a signature, the server checks these bindings against expected values. These contextual bindings are divided in two: Those added by the Relying Party or the client, referred to as client data; and those added by the authenticator, referred to as the authenticator data. The authenticator signs over the client data, but is otherwise not interested in its contents. To save bandwidth and processing requirements on the authenticator, the client hashes the client data and sends only the result to the authenticator. The authenticator signs over the combination of the hash of the serialized client data, and its own authenticator data.

The goals of this design can be summarized as follows.

Authenticators produce cryptographic signatures for two distinct purposes:

  1. An attestation signature is produced when a new public key credential is created via an authenticatorMakeCredential operation. An attestation signature provides cryptographic proof of certain properties of the authenticator and the credential. For instance, an attestation signature asserts the authenticator type (as denoted by its AAGUID) and the credential public key. The attestation signature is signed by an attestation private key, which is chosen depending on the type of attestation desired. For more details on attestation, see § 6.5 Attestation.

  2. An assertion signature is produced when the authenticatorGetAssertion method is invoked. It represents an assertion by the authenticator that the user has consented to a specific transaction, such as logging in, or completing a purchase. Thus, an assertion signature asserts that the authenticator possessing a particular credential private key has established, to the best of its ability, that the user requesting this transaction is the same user who consented to creating that particular public key credential. It also asserts additional information, termed client data, that may be useful to the caller, such as the means by which user consent was provided, and the prompt shown to the user by the authenticator. The assertion signature format is illustrated in Figure 4, below.

The term WebAuthn signature refers to both attestation signatures and assertion signatures. The formats of these signatures, as well as the procedures for generating them, are specified below.

6.1. Authenticator Data

The authenticator data structure encodes contextual bindings made by the authenticator. These bindings are controlled by the authenticator itself, and derive their trust from the WebAuthn Relying Party's assessment of the security properties of the authenticator. In one extreme case, the authenticator may be embedded in the client, and its bindings may be no more trustworthy than the client data. At the other extreme, the authenticator may be a discrete entity with high-security hardware and software, connected to the client over a secure channel. In both cases, the Relying Party receives the authenticator data in the same format, and uses its knowledge of the authenticator to make trust decisions.

The authenticator data has a compact but extensible encoding. This is desired since authenticators can be devices with limited capabilities and low power requirements, with much simpler software stacks than the client platform.

The authenticator data structure is a byte array of 37 bytes or more, laid out as shown in Table .

Name Length (in bytes) Description
rpIdHash 32 SHA-256 hash of the RP ID the credential is scoped to.
flags 1 Flags (bit 0 is the least significant bit):
signCount 4 Signature counter, 32-bit unsigned big-endian integer.
attestedCredentialData variable (if present) attested credential data (if present). See § 6.5.1 Attested Credential Data for details. Its length depends on the length of the credential ID and credential public key being attested.
extensions variable (if present) Extension-defined authenticator data. This is a CBOR [RFC8949] map with extension identifiers as keys, and authenticator extension outputs as values. See § 9 WebAuthn Extensions for details.
Authenticator data layout. The names in the Name column are only for reference within this document, and are not present in the actual representation of the authenticator data.

The RP ID is originally received from the client when the credential is created, and again when an assertion is generated. However, it differs from other client data in some important ways. First, unlike the client data, the RP ID of a credential does not change between operations but instead remains the same for the lifetime of that credential. Secondly, it is validated by the authenticator during the authenticatorGetAssertion operation, by verifying that the RP ID that the requested credential is scoped to exactly matches the RP ID supplied by the client.

Authenticators perform the following steps to generate an authenticator data structure:

Figure shows a visual representation of the authenticator data structure.

Authenticator data layout.
Note: The authenticator data describes its own length: If the AT and ED flags are not set, it is always 37 bytes long. The attested credential data (which is only present if the AT flag is set) describes its own length. If the ED flag is set, then the total length is 37 bytes plus the length of the attested credential data (if the AT flag is set), plus the length of the extensions output (a CBOR map) that follows.

Determining attested credential data's length, which is variable, involves determining credentialPublicKey’s beginning location given the preceding credentialId’s length, and then determining the credentialPublicKey’s length (see also Section 7 of [RFC9052]).

6.1.1. Signature Counter Considerations

Authenticators SHOULD implement a signature counter feature. These counters are conceptually stored for each credential by the authenticator, or globally for the authenticator as a whole. The initial value of a credential’s signature counter is specified in the signCount value of the authenticator data returned by authenticatorMakeCredential. The signature counter is incremented for each successful authenticatorGetAssertion operation by some positive value, and subsequent values are returned to the WebAuthn Relying Party within the authenticator data again. The signature counter's purpose is to aid Relying Parties in detecting cloned authenticators. Clone detection is more important for authenticators with limited protection measures.

Authenticators that do not implement a signature counter leave the signCount in the authenticator data constant at zero.

A Relying Party stores the signature counter of the most recent authenticatorGetAssertion operation. (Or the counter from the authenticatorMakeCredential operation if no authenticatorGetAssertion has ever been performed on a credential.) In subsequent authenticatorGetAssertion operations, the Relying Party compares the stored signature counter value with the new signCount value returned in the assertion’s authenticator data. If either is non-zero, and the new signCount value is less than or equal to the stored value, a cloned authenticator may exist, or the authenticator may be malfunctioning, or a race condition might exist where the relying party is receiving and processing assertions in an order other than the order they were generated at the authenticator.

Detecting a signature counter mismatch does not indicate whether the current operation was performed by a cloned authenticator or the original authenticator. Relying Parties should address this situation appropriately relative to their individual situations, i.e., their risk tolerance or operational factors that might result in an acceptable reason for non-increasing values.

Authenticators:

6.1.2. FIDO U2F Signature Format Compatibility

The format for assertion signatures, which sign over the concatenation of an authenticator data structure and the hash of the serialized client data, are compatible with the FIDO U2F authentication signature format (see Section 5.4 of [FIDO-U2F-Message-Formats]).

This is because the first 37 bytes of the signed data in a FIDO U2F authentication response message constitute a valid authenticator data structure, and the remaining 32 bytes are the hash of the serialized client data. In this authenticator data structure, the rpIdHash is the FIDO U2F application parameter, all flags except UP are always zero, and the attestedCredentialData and extensions are never present. FIDO U2F authentication signatures can therefore be verified by the same procedure as other assertion signatures generated by the authenticatorGetAssertion operation.

6.1.3. Credential Backup State

Credential backup eligibility and current backup state is conveyed by the BE and BS flags in the authenticator data, as defined in Table .

The value of the BE flag is set during authenticatorMakeCredential operation and MUST NOT change.

The value of the BS flag may change over time based on the current state of the public key credential source. Table below defines valid combinations and their meaning.

BE BS Description
0 0 The credential is a single-device credential.
0 1 This combination is not allowed.
1 0 The credential is a multi-device credential and is not currently backed up.
1 1 The credential is a multi-device credential and is currently backed up.
BE and BS flag combinations

It is RECOMMENDED that Relying Parties store the most recent value of these flags with the user account for future evaluation.

The following is a non-exhaustive list of how Relying Parties might use these flags:

6.2. Authenticator Taxonomy

Many use cases are dependent on the capabilities of the authenticator used. This section defines some terminology for those capabilities, their most important combinations, and which use cases those combinations enable.

For example:

The above examples illustrate the primary authenticator type characteristics:

These characteristics are independent and may in theory be combined in any way, but Table lists and names some authenticator types of particular interest.

Authenticator Type Authenticator Attachment Modality Credential Storage Modality Authentication Factor Capability
Second-factor platform authenticator platform Either Single-factor capable
User-verifying platform authenticator platform Either Multi-factor capable
Second-factor roaming authenticator cross-platform Server-side storage Single-factor capable
Passkey roaming authenticator cross-platform Client-side storage Multi-factor capable
Passkey platform authenticator platform (transport = internal) or cross-platform (transport = hybrid) Client-side storage Multi-factor capable
Definitions of names for some authenticator types.

A second-factor platform authenticator is convenient to use for re-authentication on the same client device, and can be used to add an extra layer of security both when initiating a new session and when resuming an existing session. A second-factor roaming authenticator is more likely to be used to authenticate on a particular client device for the first time, or on a client device shared between multiple users.

Passkey platform authenticators and passkey roaming authenticators enable passwordless multi-factor authentication. In addition to the proof of possession of the credential private key, these authenticators support user verification as a second authentication factor, typically a PIN or biometric recognition. The authenticator can thus act as two kinds of authentication factor, which enables multi-factor authentication while eliminating the need to share a password with the Relying Party. These authenticators also support discoverable credentials, also called passkeys, meaning they also enable authentication flows where username input is not necessary.

The user-verifying platform authenticator class is largely obsoleted by the passkey platform authenticator class, but the definition is still used by the isUserVerifyingPlatformAuthenticatorAvailable method.

The combinations not named in Table have less distinguished use cases:

The following subsections define the aspects authenticator attachment modality, credential storage modality and authentication factor capability in more depth.

6.2.1. Authenticator Attachment Modality

Clients can communicate with authenticators using a variety of mechanisms. For example, a client MAY use a client device-specific API to communicate with an authenticator which is physically bound to a client device. On the other hand, a client can use a variety of standardized cross-platform transport protocols such as Bluetooth (see § 5.8.4 Authenticator Transport Enumeration (enum AuthenticatorTransport)) to discover and communicate with cross-platform attached authenticators. We refer to authenticators that are part of the client device as platform authenticators, while those that are reachable via cross-platform transport protocols are referred to as roaming authenticators.

Some platform authenticators could possibly also act as roaming authenticators depending on context. For example, a platform authenticator integrated into a mobile device could make itself available as a roaming authenticator via Bluetooth. In this case clients running on the mobile device would recognise the authenticator as a platform authenticator, while clients running on a different client device and communicating with the same authenticator via Bluetooth would recognize it as a roaming authenticator.

The primary use case for platform authenticators is to register a particular client device as a "trusted device", so the client device itself acts as a something you have authentication factor for future authentication. This gives the user the convenience benefit of not needing a roaming authenticator for future authentication ceremonies, e.g., the user will not have to dig around in their pocket for their key fob or phone.

Use cases for roaming authenticators include: authenticating on a new client device for the first time, on rarely used client devices, client devices shared between multiple users, or client devices that do not include a platform authenticator; and when policy or preference dictates that the authenticator be kept separate from the client devices it is used with. A roaming authenticator can also be used to hold backup credentials in case another authenticator is lost.

6.2.2. Credential Storage Modality

An authenticator can store a public key credential source in one of two ways:

  1. In persistent storage embedded in the authenticator, client or client device, e.g., in a secure element. This is a technical requirement for a client-side discoverable public key credential source.

  2. By encrypting (i.e., wrapping) the public key credential source such that only this authenticator can decrypt (i.e., unwrap) it and letting the resulting ciphertext be the credential ID of the public key credential source. The credential ID is stored by the Relying Party and returned to the authenticator via the allowCredentials option of get(), which allows the authenticator to decrypt and use the public key credential source.

    This enables the authenticator to have unlimited credential storage capacity, since the encrypted public key credential sources are stored by the Relying Party instead of by the authenticator - but it means that a credential stored in this way must be retrieved from the Relying Party before the authenticator can use it.

Which of these storage strategies an authenticator supports defines the authenticator's credential storage modality as follows:

Note that a discoverable credential capable authenticator MAY support both storage strategies. In this case, the authenticator MAY at its discretion use different storage strategies for different credentials, though subject to the residentKey and requireResidentKey options of create().

6.2.3. Authentication Factor Capability

There are three broad classes of authentication factors that can be used to prove an identity during an authentication ceremony: something you have, something you know and something you are. Examples include a physical key, a password, and a fingerprint, respectively.

All WebAuthn Authenticators belong to the something you have class, but an authenticator that supports user verification can also act as one or two additional kinds of authentication factor. For example, if the authenticator can verify a PIN, the PIN is something you know, and a biometric authenticator can verify something you are. Therefore, an authenticator that supports user verification is multi-factor capable. Conversely, an authenticator that is not multi-factor capable is single-factor capable. Note that a single multi-factor capable authenticator could support several modes of user verification, meaning it could act as all three kinds of authentication factor.

Although user verification is performed locally on the authenticator and not by the Relying Party, the authenticator indicates if user verification was performed by setting the UV flag in the signed response returned to the Relying Party. The Relying Party can therefore use the UV flag to verify that additional authentication factors were used in a registration or authentication ceremony. The authenticity of the UV flag can in turn be assessed by inspecting the authenticator's attestation statement.

6.3. Authenticator Operations

A WebAuthn Client MUST connect to an authenticator in order to invoke any of the operations of that authenticator. This connection defines an authenticator session. An authenticator must maintain isolation between sessions. It may do this by only allowing one session to exist at any particular time, or by providing more complicated session management.

The following operations can be invoked by the client in an authenticator session.

6.3.1. Lookup Credential Source by Credential ID Algorithm

The result of looking up a credential id credentialId in an authenticator authenticator is the result of the following algorithm:

  1. If authenticator can decrypt credentialId into a public key credential source credSource:

    1. Set credSource.id to credentialId.

    2. Return credSource.

  2. For each public key credential source credSource of authenticator’s credentials map:

    1. If credSource.id is credentialId, return credSource.

  3. Return null.

6.3.2. The authenticatorMakeCredential Operation

Before invoking this operation, the client MUST invoke the authenticatorCancel operation in order to abort all other operations in progress in the authenticator session.

This operation takes the following input parameters:

hash

The hash of the serialized client data, provided by the client.

rpEntity

The Relying Party's PublicKeyCredentialRpEntity.

userEntity

The user account’s PublicKeyCredentialUserEntity, containing the user handle given by the Relying Party.

requireResidentKey

The effective resident key requirement for credential creation, a Boolean value determined by the client.

requireUserPresence

The constant Boolean value true, or FALSE when options.mediation is set to conditional and the user agent previously collected consent from the user.

requireUserVerification

The effective user verification requirement for credential creation, a Boolean value determined by the client.

credTypesAndPubKeyAlgs

A sequence of pairs of PublicKeyCredentialType and public key algorithms (COSEAlgorithmIdentifier) requested by the Relying Party. This sequence is ordered from most preferred to least preferred. The authenticator makes a best-effort to create the most preferred credential that it can.

excludeCredentialDescriptorList

An OPTIONAL list of PublicKeyCredentialDescriptor objects provided by the Relying Party with the intention that, if any of these are known to the authenticator, it SHOULD NOT create a new credential. excludeCredentialDescriptorList contains a list of known credentials.

enterpriseAttestationPossible

A Boolean value that indicates that individually-identifying attestation MAY be returned by the authenticator.

attestationFormats

A sequence of strings that expresses the Relying Party's preference for attestation statement formats, from most to least preferable. If the authenticator returns attestation, then it makes a best-effort attempt to use the most preferable format that it supports.

extensions

A CBOR map from extension identifiers to their authenticator extension inputs, created by the client based on the extensions requested by the Relying Party, if any.

When this operation is invoked, the authenticator MUST perform the following procedure:

  1. Check if all the supplied parameters are syntactically well-formed and of the correct length. If not, return an error code equivalent to "UnknownError" and terminate the operation.

  2. Check if at least one of the specified combinations of PublicKeyCredentialType and cryptographic parameters in credTypesAndPubKeyAlgs is supported. If not, return an error code equivalent to "NotSupportedError" and terminate the operation.

  3. For each descriptor of excludeCredentialDescriptorList:

    1. If looking up descriptor.id in this authenticator returns non-null, and the returned item's RP ID and type match rpEntity.id and excludeCredentialDescriptorList.type respectively, then collect an authorization gesture confirming user consent for creating a new credential. The authorization gesture MUST include a test of user presence. If the user

      confirms consent to create a new credential

      return an error code equivalent to "InvalidStateError" and terminate the operation.

      does not consent to create a new credential

      return an error code equivalent to "NotAllowedError" and terminate the operation.

      Note: The purpose of this authorization gesture is not to proceed with creating a credential, but for privacy reasons to authorize disclosure of the fact that descriptor.id is bound to this authenticator. If the user consents, the client and Relying Party can detect this and guide the user to use a different authenticator. If the user does not consent, the authenticator does not reveal that descriptor.id is bound to it, and responds as if the user simply declined consent to create a credential.

  4. If requireResidentKey is true and the authenticator cannot store a client-side discoverable public key credential source, return an error code equivalent to "ConstraintError" and terminate the operation.

  5. If requireUserVerification is true and the authenticator cannot perform user verification, return an error code equivalent to "ConstraintError" and terminate the operation.

  6. Once the authorization gesture has been completed and user consent has been obtained, generate a new credential object:

    1. Let (publicKey, privateKey) be a new pair of cryptographic keys using the combination of PublicKeyCredentialType and cryptographic parameters represented by the first item in credTypesAndPubKeyAlgs that is supported by this authenticator.

    2. Let userHandle be userEntity.id.

    3. Let credentialSource be a new public key credential source with the fields:

      type

      public-key.

      privateKey

      privateKey

      rpId

      rpEntity.id

      userHandle

      userHandle

      otherUI

      Any other information the authenticator chooses to include.

    4. If requireResidentKey is true or the authenticator chooses to create a client-side discoverable public key credential source:

      1. Let credentialId be a new credential id.

      2. Set credentialSource.id to credentialId.

      3. Let credentials be this authenticator’s credentials map.

      4. Set credentials[(rpEntity.id, userHandle)] to credentialSource.

    5. Otherwise:

      1. Let credentialId be the result of serializing and encrypting credentialSource so that only this authenticator can decrypt it.

  7. If any error occurred while creating the new credential object, return an error code equivalent to "UnknownError" and terminate the operation.

  8. Let processedExtensions be the result of authenticator extension processing for each supported extension identifierauthenticator extension input in extensions.

  9. If the authenticator:

    is a U2F device

    let the signature counter value for the new credential be zero. (U2F devices may support signature counters but do not return a counter when making a credential. See [FIDO-U2F-Message-Formats].)

    supports a global signature counter

    Use the global signature counter's actual value when generating authenticator data.

    supports a per credential signature counter

    allocate the counter, associate it with the new credential, and initialize the counter value as zero.

    does not support a signature counter

    let the signature counter value for the new credential be constant at zero.

  10. Let attestedCredentialData be the attested credential data byte array including the credentialId and publicKey.

  11. Let attestationFormat be the first supported attestation statement format identifier from attestationFormats, taking into account enterpriseAttestationPossible. If attestationFormats contains no supported value, then let attestationFormat be the attestation statement format identifier most preferred by this authenticator.

  12. Let authenticatorData be the byte array specified in § 6.1 Authenticator Data, including attestedCredentialData as the attestedCredentialData and processedExtensions, if any, as the extensions.

  13. Create an attestation object for the new credential using the procedure specified in § 6.5.4 Generating an Attestation Object, the attestation statement format attestationFormat, and the values authenticatorData and hash, as well as taking into account the value of enterpriseAttestationPossible. For more details on attestation, see § 6.5 Attestation.

On successful completion of this operation, the authenticator returns the attestation object to the client.

6.3.3. The authenticatorGetAssertion Operation

Before invoking this operation, the client MUST invoke the authenticatorCancel operation in order to abort all other operations in progress in the authenticator session.

This operation takes the following input parameters:

rpId

The caller’s RP ID, as determined by the user agent and the client.

hash

The hash of the serialized client data, provided by the client.

allowCredentialDescriptorList

An OPTIONAL list of PublicKeyCredentialDescriptors describing credentials acceptable to the Relying Party (possibly filtered by the client), if any.

requireUserPresence

The constant Boolean value true. It is included here as a pseudo-parameter to simplify applying this abstract authenticator model to implementations that may wish to make a test of user presence optional although WebAuthn does not.

requireUserVerification

The effective user verification requirement for assertion, a Boolean value provided by the client.

extensions

A CBOR map from extension identifiers to their authenticator extension inputs, created by the client based on the extensions requested by the Relying Party, if any.

When this method is invoked, the authenticator MUST perform the following procedure:

  1. Check if all the supplied parameters are syntactically well-formed and of the correct length. If not, return an error code equivalent to "UnknownError" and terminate the operation.

  2. Let credentialOptions be a new empty set of public key credential sources.

  3. If allowCredentialDescriptorList was supplied, then for each descriptor of allowCredentialDescriptorList:

    1. Let credSource be the result of looking up descriptor.id in this authenticator.

    2. If credSource is not null, append it to credentialOptions.

  4. Otherwise (allowCredentialDescriptorList was not supplied), for each keycredSource of this authenticator’s credentials map, append credSource to credentialOptions.

  5. Remove any items from credentialOptions whose rpId is not equal to rpId.

  6. If credentialOptions is now empty, return an error code equivalent to "NotAllowedError" and terminate the operation.

  7. Prompt the user to select a public key credential source selectedCredential from credentialOptions. Collect an authorization gesture confirming user consent for using selectedCredential. The prompt for the authorization gesture may be shown by the authenticator if it has its own output capability, or by the user agent otherwise.

    If requireUserVerification is true, the authorization gesture MUST include user verification.

    If requireUserPresence is true, the authorization gesture MUST include a test of user presence.

    If the user does not consent, return an error code equivalent to "NotAllowedError" and terminate the operation.

  8. Let processedExtensions be the result of authenticator extension processing for each supported extension identifierauthenticator extension input in extensions.

  9. Increment the credential associated signature counter or the global signature counter value, depending on which approach is implemented by the authenticator, by some positive value. If the authenticator does not implement a signature counter, let the signature counter value remain constant at zero.

  10. Let authenticatorData be the byte array specified in § 6.1 Authenticator Data including processedExtensions, if any, as the extensions and excluding attestedCredentialData.

  11. Let signature be the assertion signature of the concatenation authenticatorData || hash using the privateKey of selectedCredential as shown in Figure , below. A simple, undelimited concatenation is safe to use here because the authenticator data describes its own length. The hash of the serialized client data (which potentially has a variable length) is always the last element.

    Generating an assertion signature.
  12. If any error occurred while generating the assertion signature, return an error code equivalent to "UnknownError" and terminate the operation.

  13. Return to the user agent:
    • selectedCredential.id, if either a list of credentials (i.e., allowCredentialDescriptorList) of length 2 or greater was supplied by the client, or no such list was supplied.

      Note: If, within allowCredentialDescriptorList, the client supplied exactly one credential and it was successfully employed, then its credential ID is not returned since the client already knows it. This saves transmitting these bytes over what may be a constrained connection in what is likely a common case.

    • authenticatorData

    • signature

    • selectedCredential.userHandle

      Note: In cases where allowCredentialDescriptorList was supplied the returned userHandle value may be null, see: userHandleResult.

If the authenticator cannot find any credential corresponding to the specified Relying Party that matches the specified criteria, it terminates the operation and returns an error.

6.3.4. The authenticatorCancel Operation

This operation takes no input parameters and returns no result.

When this operation is invoked by the client in an authenticator session, it has the effect of terminating any authenticatorMakeCredential or authenticatorGetAssertion operation currently in progress in that authenticator session. The authenticator stops prompting for, or accepting, any user input related to authorizing the canceled operation. The client ignores any further responses from the authenticator for the canceled operation.

This operation is ignored if it is invoked in an authenticator session which does not have an authenticatorMakeCredential or authenticatorGetAssertion operation currently in progress.

6.3.5. The silentCredentialDiscovery operation

This is an OPTIONAL operation authenticators MAY support to enable conditional user mediation.

It takes the following input parameter:

rpId

The caller’s RP ID, as determined by the client.

When this operation is invoked, the authenticator MUST perform the following procedure:

  1. Let collectedDiscoverableCredentialMetadata be a new list whose items are DiscoverableCredentialMetadata structs with the following items:

    type

    A PublicKeyCredentialType.

    id

    A Credential ID.

    rpId

    A Relying Party Identifier.

    userHandle

    A user handle.

    otherUI

    Other information used by the authenticator to inform its UI.

  2. For each public key credential source credSource of authenticator’s credentials map:

    1. If credSource is not a client-side discoverable credential, continue.

    2. If credSource.rpId is not rpId, continue.

    3. Let discoveredCredentialMetadata be a new DiscoverableCredentialMetadata struct whose items are copies of credSource’s type, id, rpId, userHandle and otherUI.

    4. Append discoveredCredentialMetadata to collectedDiscoverableCredentialMetadata.

  3. Return collectedDiscoverableCredentialMetadata.

6.4. String Handling

Authenticators may be required to store arbitrary strings chosen by a Relying Party, for example the name and displayName in a PublicKeyCredentialUserEntity. This section discusses some practical consequences of handling arbitrary strings that may be presented to humans.

6.4.1. String Truncation

Each arbitrary string in the API will have some accommodation for the potentially limited resources available to an authenticator. When the chosen accommodation is string truncation, care needs to be taken to not corrupt the string value.

For example, truncation based on Unicode code points alone may cause a grapheme cluster to be truncated. This could make the grapheme cluster render as a different glyph, potentially changing the meaning of the string, instead of removing the glyph entirely. For example, figure shows the end of a UTF-8 encoded string whose encoding is 65 bytes long. If truncating to 64 bytes then the final 0x88 byte is removed first to satisfy the size limit. Since that leaves a partial UTF-8 code point, the remainder of that code point must also be removed. Since that leaves a partial grapheme cluster, the remainder of that cluster should also be removed.

The end of a UTF-8 encoded string showing the positions of different truncation boundaries.

The responsibility for handling these concerns falls primarily on the client, to avoid burdening authenticators with understanding character encodings and Unicode character properties. The following subsections define requirements for how clients and authenticators, respectively, may perform string truncation.

6.4.1.1. String Truncation by Clients

When a WebAuthn Client truncates a string, the truncation behaviour observable by the Relying Party MUST satisfy the following requirements:

Choose a size limit equal to or greater than the specified minimum supported length. The string MAY be truncated so that its length in bytes in the UTF-8 character encoding satisfies that limit. This truncation MUST respect UTF-8 code point boundaries, and SHOULD respect grapheme cluster boundaries [UAX29]. The resulting truncated value MAY be shorter than the chosen size limit but MUST NOT be shorter than the longest prefix substring that satisfies the size limit and ends on a grapheme cluster boundary.

The client MAY let the authenticator perform the truncation if it satisfies these requirements; otherwise the client MUST perform the truncation before relaying the string value to the authenticator.

In addition to the above, truncating on byte boundaries alone causes a known issue that user agents should be aware of: if the authenticator is using [FIDO-CTAP] then future messages from the authenticator may contain invalid CBOR since the value is typed as a CBOR string and thus is required to be valid UTF-8. Thus, when dealing with authenticators, user agents SHOULD:

  1. Ensure that any strings sent to authenticators are validly encoded.

  2. Handle the case where strings have been truncated resulting in an invalid encoding. For example, any partial code point at the end may be dropped or replaced with U+FFFD.

6.4.1.2. String Truncation by Authenticators

Because a WebAuthn Authenticator may be implemented in a constrained environment, the requirements on authenticators are relaxed compared to those for clients.

When a WebAuthn Authenticator truncates a string, the truncation behaviour MUST satisfy the following requirements:

Choose a size limit equal to or greater than the specified minimum supported length. The string MAY be truncated so that its length in bytes in the UTF-8 character encoding satisfies that limit. This truncation SHOULD respect UTF-8 code point boundaries, and MAY respect grapheme cluster boundaries [UAX29]. The resulting truncated value MAY be shorter than the chosen size limit but MUST NOT be shorter than the longest prefix substring that satisfies the size limit and ends on a grapheme cluster boundary.

6.4.2. Language and Direction Encoding

In order to be correctly displayed in context, the language and base direction of a string may be required. Strings in this API may have to be written to fixed-function authenticators and then later read back and displayed on a different platform. Thus language and direction metadata is encoded in the string itself to ensure that it is transported atomically.

To encode language and direction metadata in a string that is documented as permitting it, suffix its code points with two sequences of code points:

The first encodes a language tag with the code point U+E0001 followed by the ASCII values of the language tag each shifted up by U+E0000. For example, the language tag “en-US” becomes the code points U+E0001, U+E0065, U+E006E, U+E002D, U+E0055, U+E0053.

The second consists of a single code point which is either U+200E (“LEFT-TO-RIGHT MARK”), U+200F (“RIGHT-TO-LEFT MARK”), or U+E007F (“CANCEL TAG”). The first two can be used to indicate directionality but SHOULD only be used when neccessary to produce the correct result. (E.g. an RTL string that starts with LTR-strong characters.) The value U+E007F is a direction-agnostic indication of the end of the language tag.

So the string “حبیب الرحمان” could have two different DOMString values, depending on whether the language was encoded or not. (Since the direction is unambiguous a directionality marker is not needed in this example.)

Consumers of strings that may have language and direction encoded should be aware that truncation could truncate a language tag into a different, but still valid, language. The final directionality marker or CANCEL TAG code point provide an unambigous indication of truncation.

6.5. Attestation

Authenticators SHOULD also provide some form of attestation, if possible. If an authenticator does, the basic requirement is that the authenticator can produce, for each credential public key, an attestation statement verifiable by the WebAuthn Relying Party. Typically, this attestation statement contains a signature by an attestation private key over the attested credential public key and a challenge, as well as a certificate or similar data providing provenance information for the attestation public key, enabling the Relying Party to make a trust decision. However, if an attestation key pair is not available, then the authenticator MAY either perform self attestation of the credential public key with the corresponding credential private key, or otherwise perform no attestation. All this information is returned by authenticators any time a new public key credential is generated, in the overall form of an attestation object. The relationship of the attestation object with authenticator data (containing attested credential data) and the attestation statement is illustrated in figure , below.

If an authenticator employs self attestation or no attestation, then no provenance information is provided for the Relying Party to base a trust decision on. In these cases, the authenticator provides no guarantees about its operation to the Relying Party.

Attestation object layout illustrating the included authenticator data (containing attested credential data) and the attestation statement.
Note: This figure illustrates only the packed attestation statement format. Several additional attestation statement formats are defined in § 8 Defined Attestation Statement Formats.

An important component of the attestation object is the attestation statement. This is a specific type of signed data object, containing statements about a public key credential itself and the authenticator that created it. It contains an attestation signature created using the key of the attesting authority (except for the case of self attestation, when it is created using the credential private key). In order to correctly interpret an attestation statement, a Relying Party needs to understand these two aspects of attestation:

  1. The attestation statement format is the manner in which the signature is represented and the various contextual bindings are incorporated into the attestation statement by the authenticator. In other words, this defines the syntax of the statement. Various existing components and OS platforms (such as TPMs and the Android OS) have previously defined attestation statement formats. This specification supports a variety of such formats in an extensible way, as defined in § 6.5.2 Attestation Statement Formats. The formats themselves are identified by strings, as described in § 8.1 Attestation Statement Format Identifiers.

  2. The attestation type defines the semantics of attestation statements and their underlying trust models. Specifically, it defines how a Relying Party establishes trust in a particular attestation statement, after verifying that it is cryptographically valid. This specification supports a number of attestation types, as described in § 6.5.3 Attestation Types.

In general, there is no simple mapping between attestation statement formats and attestation types. For example, the "packed" attestation statement format defined in § 8.2 Packed Attestation Statement Format can be used in conjunction with all attestation types, while other formats and types have more limited applicability.

The privacy, security and operational characteristics of attestation depend on:

The attestation type and attestation statement format is chosen by the authenticator; Relying Parties can only signal their preferences by setting the attestation and attestationFormats parameters.

It is expected that most authenticators will support a small number of attestation types and attestation statement formats, while Relying Parties will decide what attestation types are acceptable to them by policy. Relying Parties will also need to understand the characteristics of the authenticators that they trust, based on information they have about these authenticators. For example, the FIDO Metadata Service [FIDOMetadataService] provides one way to access such information.

6.5.1. Attested Credential Data

Attested credential data is a variable-length byte array added to the authenticator data when generating an attestation object for a credential. Its format is shown in Table .

Name Length (in bytes) Description
aaguid 16 The AAGUID of the authenticator.
credentialIdLength 2 Byte length L of credentialId, 16-bit unsigned big-endian integer. Value MUST be ≤ 1023.
credentialId L Credential ID
credentialPublicKey variable The credential public key encoded in COSE_Key format, as defined in Section 7 of [RFC9052], using the CTAP2 canonical CBOR encoding form. The COSE_Key-encoded credential public key MUST contain the "alg" parameter and MUST NOT contain any other OPTIONAL parameters. The "alg" parameter MUST contain a COSEAlgorithmIdentifier value. The encoded credential public key MUST also contain any additional REQUIRED parameters stipulated by the relevant key type specification, i.e., REQUIRED for the key type "kty" and algorithm "alg" (see Section 2 of [RFC9053]).
Attested credential data layout. The names in the Name column are only for reference within this document, and are not present in the actual representation of the attested credential data.
6.5.1.1. Examples of credentialPublicKey Values Encoded in COSE_Key Format

This section provides examples of COSE_Key-encoded Elliptic Curve and RSA public keys for the ES256, PS256, and RS256 signature algorithms. These examples adhere to the rules defined above for the credentialPublicKey value, and are presented in CDDL [RFC8610] for clarity.

Section 7 of [RFC9052] defines the general framework for all COSE_Key-encoded keys. Specific key types for specific algorithms are defined in [RFC9053] as well as in other specifications, as noted below.

Below is an example of a COSE_Key-encoded Elliptic Curve public key in EC2 format (see Section 7.1 of [RFC9053]), on the P-256 curve, to be used with the ES256 signature algorithm (ECDSA w/ SHA-256, see Section 2.1 of [RFC9053]):

{
  1:   2,  ; kty: EC2 key type
  3:  -7,  ; alg: ES256 signature algorithm
 -1:   1,  ; crv: P-256 curve
 -2:   x,  ; x-coordinate as byte string 32 bytes in length
           ; e.g., in hex: 65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de108de439c08551d
 -3:   y   ; y-coordinate as byte string 32 bytes in length
           ; e.g., in hex: 1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9eecd0084d19c
}

Below is the above Elliptic Curve public key encoded in the CTAP2 canonical CBOR encoding form, whitespace and line breaks are included here for clarity and to match the CDDL [RFC8610] presentation above:

A5
   01  02

   03  26

   20  01

   21  58 20   65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de108de439c08551d

   22  58 20   1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9eecd0084d19c

Below is an example of a COSE_Key-encoded 2048-bit RSA public key (see [RFC8230] Section 4, to be used with the PS256 signature algorithm (RSASSA-PSS with SHA-256, see Section 2 of [RFC8230]:

{
  1:   3,  ; kty: RSA key type
  3: -37,  ; alg: PS256
 -1:   n,  ; n:   RSA modulus n byte string 256 bytes in length
           ;      e.g., in hex (middle bytes elided for brevity): DB5F651550...6DC6548ACC3
 -2:   e   ; e:   RSA public exponent e byte string 3 bytes in length
           ;      e.g., in hex: 010001
}

Below is an example of the same COSE_Key-encoded RSA public key as above, to be used with the RS256 signature algorithm (RSASSA-PKCS1-v1_5 with SHA-256):

{
  1:   3,  ; kty: RSA key type
  3:-257,  ; alg: RS256
 -1:   n,  ; n:   RSA modulus n byte string 256 bytes in length
           ;      e.g., in hex (middle bytes elided for brevity): DB5F651550...6DC6548ACC3
 -2:   e   ; e:   RSA public exponent e byte string 3 bytes in length
           ;      e.g., in hex: 010001
}

6.5.2. Attestation Statement Formats

As described above, an attestation statement format is a data format which represents a cryptographic signature by an authenticator over a set of contextual bindings. Each attestation statement format MUST be defined using the following template:

The initial list of specified attestation statement formats is in § 8 Defined Attestation Statement Formats.

6.5.3. Attestation Types

WebAuthn supports several attestation types, defining the semantics of attestation statements and their underlying trust models:

Note: This specification does not define any data structures explicitly expressing the attestation types employed by authenticators. Relying Parties engaging in attestation statement verification — i.e., when calling navigator.credentials.create() they select an attestation conveyance other than none and verify the received attestation statement — will determine the employed attestation type as a part of verification. See the "Verification procedure" subsections of § 8 Defined Attestation Statement Formats. See also § 14.4.1 Attestation Privacy. For all attestation types defined in this section other than Self and None, Relying Party verification is followed by matching the trust path to an acceptable root certificate per step 23 of § 7.1 Registering a New Credential. Differentiating these attestation types becomes useful primarily as a means for determining if the attestation is acceptable under Relying Party policy.

Basic Attestation (Basic)

In the case of basic attestation [UAFProtocol], the authenticator’s attestation key pair is specific to an authenticator "model", i.e., a "batch" of authenticators. Thus, authenticators of the same, or similar, model often share the same attestation key pair. See § 14.4.1 Attestation Privacy for further information.

Basic attestation is also referred to as batch attestation.

Self Attestation (Self)

In the case of self attestation, also known as surrogate basic attestation [UAFProtocol], the Authenticator does not have any specific attestation key pair. Instead it uses the credential private key to create the attestation signature. Authenticators without meaningful protection measures for an attestation private key typically use this attestation type.

Attestation CA (AttCA)

In this case, an authenticator is based on a Trusted Platform Module (TPM) and holds an authenticator-specific "endorsement key" (EK). This key is used to securely communicate with a trusted third party, the Attestation CA [TCG-CMCProfile-AIKCertEnroll] (formerly known as a "Privacy CA"). The authenticator can generate multiple attestation identity key pairs (AIK) and requests an Attestation CA to issue an AIK certificate for each. Using this approach, such an authenticator can limit the exposure of the EK (which is a global correlation handle) to Attestation CA(s). AIKs can be requested for each authenticator-generated public key credential individually, and conveyed to Relying Parties as attestation certificates.

Note: This concept typically leads to multiple attestation certificates. The attestation certificate requested most recently is called "active".

Anonymization CA (AnonCA)

In this case, the authenticator uses an Anonymization CA which dynamically generates per-credential attestation certificates such that the attestation statements presented to Relying Parties do not provide uniquely identifiable information, e.g., that might be used for tracking purposes.

Note: Attestation statements conveying attestations of type AttCA or AnonCA use the same data structure as those of type Basic, so the three attestation types are, in general, distinguishable only with externally provided knowledge regarding the contents of the attestation certificates conveyed in the attestation statement.

No attestation statement (None)

In this case, no attestation information is available. See also § 8.7 None Attestation Statement Format.

6.5.4. Generating an Attestation Object

To generate an attestation object (see: Figure 6) given:

attestationFormat

An attestation statement format.

authData

A byte array containing authenticator data.

hash

The hash of the serialized client data.

the authenticator MUST:

  1. Let attStmt be the result of running attestationFormat’s signing procedure given authData and hash.

  2. Let fmt be attestationFormat’s attestation statement format identifier

  3. Return the attestation object as a CBOR map with the following syntax, filled in with variables initialized by this algorithm:

    attObj = {
        authData: bytes,
    
        ; Each choice in $$attStmtType defines the fmt value and attStmt structure
        $$attStmtType
    } .within attStmtTemplate
    
    attStmtTemplate = {
        authData: bytes,
        fmt: text,
        attStmt: (
          { * tstr => any } ; Map is filled in by each concrete attStmtType
          //
          [ * any ]         ; attStmt may also be an array
        )
    }
    

6.5.5. Signature Formats for Packed Attestation, FIDO U2F Attestation, and Assertion Signatures

It is RECOMMENDED that any new attestation formats defined not use ASN.1 encodings, but instead represent signatures as equivalent fixed-length byte arrays without internal structure, using the same representations as used by COSE signatures as defined in [RFC9053] and [RFC8230].

The below signature format definitions satisfy this requirement and serve as examples for deriving the same for other signature algorithms not explicitly mentioned here:

7. WebAuthn Relying Party Operations

A registration or authentication ceremony begins with the WebAuthn Relying Party creating a PublicKeyCredentialCreationOptions or PublicKeyCredentialRequestOptions object, respectively, which encodes the parameters for the ceremony. The Relying Party SHOULD take care to not leak sensitive information during this stage; see § 14.6.2 Username Enumeration for details.

Upon successful execution of create() or get(), the Relying Party's script receives a PublicKeyCredential containing an AuthenticatorAttestationResponse or AuthenticatorAssertionResponse structure, respectively, from the client. It must then deliver the contents of this structure to the Relying Party server, using methods outside the scope of this specification. This section describes the operations that the Relying Party must perform upon receipt of these structures.

7.1. Registering a New Credential

In order to perform a registration ceremony, the Relying Party MUST proceed as follows:

  1. Let options be a new CredentialCreationOptions structure configured to the Relying Party's needs for the ceremony. Let pkOptions be options.publicKey.

  2. Call navigator.credentials.create() and pass options as the argument. Let credential be the result of the successfully resolved promise. If the promise is rejected, abort the ceremony with a user-visible error, or otherwise guide the user experience as might be determinable from the context available in the rejected promise. For example if the promise is rejected with an error code equivalent to "InvalidStateError", the user might be instructed to use a different authenticator. For information on different error contexts and the circumstances leading to them, see § 6.3.2 The authenticatorMakeCredential Operation.

  3. Let response be credential.response. If response is not an instance of AuthenticatorAttestationResponse, abort the ceremony with a user-visible error.

  4. Let clientExtensionResults be the result of calling credential.getClientExtensionResults().

  5. Let JSONtext be the result of running UTF-8 decode on the value of response.clientDataJSON.

    Note: Using any implementation of UTF-8 decode is acceptable as long as it yields the same result as that yielded by the UTF-8 decode algorithm. In particular, any leading byte order mark (BOM) must be stripped.

  6. Let C, the client data claimed as collected during the credential creation, be the result of running an implementation-specific JSON parser on JSONtext.

    Note: C may be any implementation-specific data structure representation, as long as C’s components are referenceable, as required by this algorithm.

  7. Verify that the value of C.type is webauthn.create.

  8. Verify that the value of C.challenge equals the base64url encoding of pkOptions.challenge.

  9. Verify that the value of C.origin is an origin expected by the Relying Party. See § 13.4.9 Validating the origin of a credential for guidance.
  10. If C.crossOrigin is present and set to true, verify that the Relying Party expects that this credential would have been created within an iframe that is not same-origin with its ancestors.

  11. If C.topOrigin is present:

    1. Verify that the Relying Party expects that this credential would have been created within an iframe that is not same-origin with its ancestors.

    2. Verify that the value of C.topOrigin matches the origin of a page that the Relying Party expects to be sub-framed within. See § 13.4.9 Validating the origin of a credential for guidance.

  12. Let hash be the result of computing a hash over response.clientDataJSON using SHA-256.

  13. Perform CBOR decoding on the attestationObject field of the AuthenticatorAttestationResponse structure to obtain the attestation statement format fmt, the authenticator data authData, and the attestation statement attStmt.

  14. Verify that the rpIdHash in authData is the SHA-256 hash of the RP ID expected by the Relying Party.

  15. If options.mediation is not set to conditional, verify that the UP bit of the flags in authData is set.

  16. If the Relying Party requires user verification for this registration, verify that the UV bit of the flags in authData is set.

  17. If the BE bit of the flags in authData is not set, verify that the BS bit is not set.

  18. If the Relying Party uses the credential’s backup eligibility to inform its user experience flows and/or policies, evaluate the BE bit of the flags in authData.

  19. If the Relying Party uses the credential’s backup state to inform its user experience flows and/or policies, evaluate the BS bit of the flags in authData.

  20. Verify that the "alg" parameter in the credential public key in authData matches the alg attribute of one of the items in pkOptions.pubKeyCredParams.

  21. Determine the attestation statement format by performing a USASCII case-sensitive match on fmt against the set of supported WebAuthn Attestation Statement Format Identifier values. An up-to-date list of registered WebAuthn Attestation Statement Format Identifier values is maintained in the IANA "WebAuthn Attestation Statement Format Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809].

  22. Verify that attStmt is a correct attestation statement, conveying a valid attestation signature, by using the attestation statement format fmt’s verification procedure given attStmt, authData and hash.

    Note: Each attestation statement format specifies its own verification procedure. See § 8 Defined Attestation Statement Formats for the initially-defined formats, and [IANA-WebAuthn-Registries] for the up-to-date list.

  23. If validation is successful, obtain a list of acceptable trust anchors (i.e. attestation root certificates) for that attestation type and attestation statement format fmt, from a trusted source or from policy. For example, the FIDO Metadata Service [FIDOMetadataService] provides one way to obtain such information, using the aaguid in the attestedCredentialData in authData.
  24. Assess the attestation trustworthiness using the outputs of the verification procedure in step 21, as follows:

    If the attestation statement is not deemed trustworthy, the Relying Party SHOULD fail the registration ceremony.

    NOTE: However, if permitted by policy, the Relying Party MAY register the credential ID and credential public key but treat the credential as one with self attestation (see § 6.5.3 Attestation Types). If doing so, the Relying Party is asserting there is no cryptographic proof that the public key credential has been generated by a particular authenticator model. See [FIDOSecRef] and [UAFProtocol] for a more detailed discussion.

  25. Verify that the credentialId is ≤ 1023 bytes. Credential IDs larger than this many bytes SHOULD cause the RP to fail this registration ceremony.

  26. Verify that the credentialId is not yet registered for any user. If the credentialId is already known then the Relying Party SHOULD fail this registration ceremony.

    Note: The rationale for Relying Parties rejecting duplicate credential IDs is as follows: credential IDs contain sufficient entropy that accidental duplication is very unlikely. However, attestation types other than self attestation do not include a self-signature to explicitly prove possession of the credential private key at registration time. Thus an attacker who has managed to obtain a user’s credential ID and credential public key for a site (this could be potentially accomplished in various ways), could attempt to register a victim’s credential as their own at that site. If the Relying Party accepts this new registration and replaces the victim’s existing credential registration, and the credentials are discoverable, then the victim could be forced to sign into the attacker’s account at their next attempt. Data saved to the site by the victim in that state would then be available to the attacker.

  27. Let credentialRecord be a new credential record with the following contents:
    type

    credential.type.

    id

    credential.id or credential.rawId, whichever format is preferred by the Relying Party.

    publicKey

    The credential public key in authData.

    signCount

    authData.signCount.

    uvInitialized

    The value of the UV flag in authData.

    transports

    The value returned from response.getTransports().

    backupEligible

    The value of the BE flag in authData.

    backupState

    The value of the BS flag in authData.

    The new credential record MAY also include the following OPTIONAL contents:

    attestationObject

    response.attestationObject.

    attestationClientDataJSON

    response.clientDataJSON.

    The Relying Party MAY also include any additional items as necessary. As a non-normative example, the Relying Party might allow the user to set a "nickname" for the credential to help the user remember which credential is bound to which authenticator when interacting with account settings.

  28. Process the client extension outputs in clientExtensionResults and the authenticator extension outputs in the extensions in authData as required by the Relying Party. Depending on each extension, processing steps may be concretely specified or it may be up to the Relying Party what to do with extension outputs. The Relying Party MAY ignore any or all extension outputs.

    Clients MAY set additional authenticator extensions or client extensions and thus cause values to appear in the authenticator extension outputs or client extension outputs that were not requested by the Relying Party in pkOptions.extensions. The Relying Party MUST be prepared to handle such situations, whether by ignoring the unsolicited extensions or by rejecting the attestation. The Relying Party can make this decision based on local policy and the extensions in use.

    Since all extensions are OPTIONAL for both the client and the authenticator, the Relying Party MUST also be prepared to handle cases where none or not all of the requested extensions were acted upon.

  29. If all the above steps are successful, store credentialRecord in the user account that was denoted in pkOptions.user and continue the registration ceremony as appropriate. Otherwise, fail the registration ceremony.

    If the Relying Party does not fail the registration ceremony in this case, then the Relying Party is accepting that there is no cryptographic proof that the public key credential has been generated by any particular authenticator model. The Relying Party MAY consider the credential as equivalent to one with no attestation (see § 6.5.3 Attestation Types). See [FIDOSecRef] and [UAFProtocol] for a more detailed discussion.

    Verification of attestation objects requires that the Relying Party has a trusted method of determining acceptable trust anchors in step 22 above. Also, if certificates are being used, the Relying Party MUST have access to certificate status information for the intermediate CA certificates. The Relying Party MUST also be able to build the attestation certificate chain if the client did not provide this chain in the attestation information.

7.2. Verifying an Authentication Assertion

In order to perform an authentication ceremony, the Relying Party MUST proceed as follows:

  1. Let options be a new CredentialRequestOptions structure configured to the Relying Party's needs for the ceremony. Let pkOptions be options.publicKey.

  2. Call navigator.credentials.get() and pass options as the argument. Let credential be the result of the successfully resolved promise. If the promise is rejected, abort the ceremony with a user-visible error, or otherwise guide the user experience as might be determinable from the context available in the rejected promise. For information on different error contexts and the circumstances leading to them, see § 6.3.3 The authenticatorGetAssertion Operation.

  3. Let response be credential.response. If response is not an instance of AuthenticatorAssertionResponse, abort the ceremony with a user-visible error.

  4. Let clientExtensionResults be the result of calling credential.getClientExtensionResults().

  5. If pkOptions.allowCredentials is not empty, verify that credential.id identifies one of the public key credentials listed in pkOptions.allowCredentials.

  6. Identify the user being authenticated and let credentialRecord be the credential record for the credential:

    If the user was identified before the authentication ceremony was initiated, e.g., via a username or cookie,

    verify that the identified user account contains a credential record whose id equals credential.rawId. Let credentialRecord be that credential record. If response.userHandle is present, verify that it equals the user handle of the user account.

    If the user was not identified before the authentication ceremony was initiated,

    verify that response.userHandle is present. Verify that the user account identified by response.userHandle contains a credential record whose id equals credential.rawId. Let credentialRecord be that credential record.

  7. Let cData, authData and sig denote the value of response’s clientDataJSON, authenticatorData, and signature respectively.

  8. Let JSONtext be the result of running UTF-8 decode on the value of cData.

    Note: Using any implementation of UTF-8 decode is acceptable as long as it yields the same result as that yielded by the UTF-8 decode algorithm. In particular, any leading byte order mark (BOM) must be stripped.

  9. Let C, the client data claimed as used for the signature, be the result of running an implementation-specific JSON parser on JSONtext.

    Note: C may be any implementation-specific data structure representation, as long as C’s components are referenceable, as required by this algorithm.

  10. Verify that the value of C.type is the string webauthn.get.

  11. Verify that the value of C.challenge equals the base64url encoding of pkOptions.challenge.

  12. Verify that the value of C.origin is an origin expected by the Relying Party. See § 13.4.9 Validating the origin of a credential for guidance.
  13. If C.crossOrigin is present and set to true, verify that the Relying Party expects this credential to be used within an iframe that is not same-origin with its ancestors.

  14. If C.topOrigin is present:

    1. Verify that the Relying Party expects this credential to be used within an iframe that is not same-origin with its ancestors.

    2. Verify that the value of C.topOrigin matches the origin of a page that the Relying Party expects to be sub-framed within. See § 13.4.9 Validating the origin of a credential for guidance.

  15. Verify that the rpIdHash in authData is the SHA-256 hash of the RP ID expected by the Relying Party.

    Note: If using the appid extension, this step needs some special logic. See § 10.1.1 FIDO AppID Extension (appid) for details.

  16. Verify that the UP bit of the flags in authData is set.

  17. Determine whether user verification is required for this assertion. User verification SHOULD be required if, and only if, pkOptions.userVerification is set to required.

    If user verification was determined to be required, verify that the UV bit of the flags in authData is set. Otherwise, ignore the value of the UV flag.

  18. If the BE bit of the flags in authData is not set, verify that the BS bit is not set.

  19. If the credential backup state is used as part of Relying Party business logic or policy, let currentBe and currentBs be the values of the BE and BS bits, respectively, of the flags in authData. Compare currentBe and currentBs with credentialRecord.backupEligible and credentialRecord.backupState:

    1. If credentialRecord.backupEligible is set, verify that currentBe is set.

    2. If credentialRecord.backupEligible is not set, verify that currentBe is not set.

    3. Apply Relying Party policy, if any.

    Note: See § 6.1.3 Credential Backup State for examples of how a Relying Party might process the BS flag values.

  20. Let hash be the result of computing a hash over the cData using SHA-256.

  21. Using credentialRecord.publicKey, verify that sig is a valid signature over the binary concatenation of authData and hash.

    Note: This verification step is compatible with signatures generated by FIDO U2F authenticators. See § 6.1.2 FIDO U2F Signature Format Compatibility.

  22. If authData.signCount is nonzero or credentialRecord.signCount is nonzero, then run the following sub-step:

    • If authData.signCount is

      greater than credentialRecord.signCount:
      The signature counter is valid.
      less than or equal to credentialRecord.signCount:
      This is a signal, but not proof, that the authenticator may be cloned. For example it might mean that:
      • Two or more copies of the credential private key may exist and are being used in parallel.

      • An authenticator is malfunctioning.

      • A race condition exists where the Relying Party is processing assertion responses in an order other than the order they were generated at the authenticator.

      Relying Parties should evaluate their own operational characteristics and incorporate this information into their risk scoring. Whether the Relying Party updates credentialRecord.signCount below in this case, or not, or fails the authentication ceremony or not, is Relying Party-specific.

      For more information on signature counter considerations, see § 6.1.1 Signature Counter Considerations.

  23. Process the client extension outputs in clientExtensionResults and the authenticator extension outputs in the extensions in authData as required by the Relying Party. Depending on each extension, processing steps may be concretely specified or it may be up to the Relying Party what to do with extension outputs. The Relying Party MAY ignore any or all extension outputs.

    Clients MAY set additional authenticator extensions or client extensions and thus cause values to appear in the authenticator extension outputs or client extension outputs that were not requested by the Relying Party in pkOptions.extensions. The Relying Party MUST be prepared to handle such situations, whether by ignoring the unsolicited extensions or by rejecting the assertion. The Relying Party can make this decision based on local policy and the extensions in use.

    Since all extensions are OPTIONAL for both the client and the authenticator, the Relying Party MUST also be prepared to handle cases where none or not all of the requested extensions were acted upon.

  24. Update credentialRecord with new state values:
    1. Update credentialRecord.signCount to the value of authData.signCount.

    2. Update credentialRecord.backupState to the value of currentBs.

    3. If credentialRecord.uvInitialized is false, update it to the value of the UV bit in the flags in authData. This change SHOULD require authorization by an additional authentication factor equivalent to WebAuthn user verification; if not authorized, skip this step.

    If the Relying Party performs additional security checks beyond these WebAuthn authentication ceremony steps, the above state updates SHOULD be deferred to after those additional checks are completed successfully.

  25. If all the above steps are successful, continue the authentication ceremony as appropriate. Otherwise, fail the authentication ceremony.

8. Defined Attestation Statement Formats

WebAuthn supports pluggable attestation statement formats. This section defines an initial set of such formats.

8.1. Attestation Statement Format Identifiers

Attestation statement formats are identified by a string, called an attestation statement format identifier, chosen by the author of the attestation statement format.

Attestation statement format identifiers SHOULD be registered in the IANA "WebAuthn Attestation Statement Format Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809]. All registered attestation statement format identifiers are unique amongst themselves as a matter of course.

Unregistered attestation statement format identifiers SHOULD use lowercase reverse domain-name naming, using a domain name registered by the developer, in order to assure uniqueness of the identifier. All attestation statement format identifiers MUST be a maximum of 32 octets in length and MUST consist only of printable USASCII characters, excluding backslash and doublequote, i.e., VCHAR as defined in [RFC5234] but without %x22 and %x5c.

Note: This means attestation statement format identifiers based on domain names are restricted to incorporating only LDH Labels [RFC5890].

Implementations MUST match WebAuthn attestation statement format identifiers in a case-sensitive fashion.

Attestation statement formats that may exist in multiple versions SHOULD include a version in their identifier. In effect, different versions are thus treated as different formats, e.g., packed2 as a new version of the § 8.2 Packed Attestation Statement Format.

The following sections present a set of currently-defined and registered attestation statement formats and their identifiers. The up-to-date list of registered attestation statement format identifiers is maintained in the IANA "WebAuthn Attestation Statement Format Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809].

8.2. Packed Attestation Statement Format

This is a WebAuthn optimized attestation statement format. It uses a very compact but still extensible encoding method. It is implementable by authenticators with limited resources (e.g., secure elements).

Attestation statement format identifier

packed

Attestation types supported

Basic, Self, AttCA

Syntax

The syntax of a Packed Attestation statement is defined by the following CDDL:

$$attStmtType //= (
                      fmt: "packed",
                      attStmt: packedStmtFormat
                  )

packedStmtFormat = {
                       alg: COSEAlgorithmIdentifier,
                       sig: bytes,
                       x5c: [ attestnCert: bytes, * (caCert: bytes) ]
                   } //
                   {
                       alg: COSEAlgorithmIdentifier
                       sig: bytes,
                   }

The semantics of the fields are as follows:

alg

A COSEAlgorithmIdentifier containing the identifier of the algorithm used to generate the attestation signature.

sig

A byte string containing the attestation signature.

x5c

The elements of this array contain attestnCert and its certificate chain (if any), each encoded in X.509 format. The attestation certificate attestnCert MUST be the first element in the array.

attestnCert

The attestation certificate, encoded in X.509 format.

Signing procedure

The signing procedure for this attestation statement format is similar to the procedure for generating assertion signatures.

  1. Let authenticatorData denote the authenticator data for the attestation, and let clientDataHash denote the hash of the serialized client data.

  2. If Basic or AttCA attestation is in use, the authenticator produces the sig by concatenating authenticatorData and clientDataHash, and signing the result using an attestation private key selected through an authenticator-specific mechanism. It sets x5c to attestnCert followed by the related certificate chain (if any). It sets alg to the algorithm of the attestation private key.

  3. If self attestation is in use, the authenticator produces sig by concatenating authenticatorData and clientDataHash, and signing the result using the credential private key. It sets alg to the algorithm of the credential private key and omits the other fields.

Verification procedure

Given the verification procedure inputs attStmt, authenticatorData and clientDataHash, the verification procedure is as follows:

  1. Verify that attStmt is valid CBOR conforming to the syntax defined above and perform CBOR decoding on it to extract the contained fields.

  2. If x5c is present:

    • Verify that sig is a valid signature over the concatenation of authenticatorData and clientDataHash using the attestation public key in attestnCert with the algorithm specified in alg.

    • Verify that attestnCert meets the requirements in § 8.2.1 Certificate Requirements for Packed Attestation Statements.

    • If attestnCert contains an extension with OID 1.3.6.1.4.1.45724.1.1.4 (id-fido-gen-ce-aaguid) verify that the value of this extension matches the aaguid in authenticatorData.

    • Optionally, inspect x5c and consult externally provided knowledge to determine whether attStmt conveys a Basic or AttCA attestation.

    • If successful, return implementation-specific values representing attestation type Basic, AttCA or uncertainty, and attestation trust path x5c.

  3. If x5c is not present, self attestation is in use.

    • Validate that alg matches the algorithm of the credentialPublicKey in authenticatorData.

    • Verify that sig is a valid signature over the concatenation of authenticatorData and clientDataHash using the credential public key with alg.

    • If successful, return implementation-specific values representing attestation type Self and an empty attestation trust path.

8.2.1. Certificate Requirements for Packed Attestation Statements

The attestation certificate MUST have the following fields/extensions:

Additionally, an Authority Information Access (AIA) extension with entry id-ad-ocsp and a CRL Distribution Point extension [RFC5280] are both OPTIONAL as the status of many attestation certificates is available through authenticator metadata services. See, for example, the FIDO Metadata Service [FIDOMetadataService].

The firmware of a particular authenticator model MAY be differentiated using the Extension OID 1.3.6.1.4.1.45724.1.1.5 (id-fido-gen-ce-fw-version). When present, this attribute contains an INTEGER with a non-negative value which is incremented for new firmware release versions. The extension MUST NOT be marked as critical.

For example, the following is an attestation certificate containing the above extension OIDs as well as required fields:

-----BEGIN CERTIFICATE-----
MIIBzTCCAXOgAwIBAgIUYHS3FJEL/JTfFqafuAHvlAS+hDYwCgYIKoZIzj0EAwIw
QTELMAkGA1UEBhMCVVMxFDASBgNVBAoMC1dlYkF1dGhuIFdHMRwwGgYDVQQDDBNF
eGFtcGxlIEF0dGVzdGF0aW9uMCAXDTI0MDEwMzE3NDUyMVoYDzIwNTAwMTA2MTc0
NTIxWjBBMQswCQYDVQQGEwJVUzEUMBIGA1UECgwLV2ViQXV0aG4gV0cxHDAaBgNV
BAMME0V4YW1wbGUgQXR0ZXN0YXRpb24wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNC
AATDQN9uaFFH4BKBjthHTM1drpb7gIuPod67qyF6UdL4qah6XUp6tE7Prl+DfQ7P
YH9yMOOcci3nr+Q/jOBaWVERo0cwRTAhBgsrBgEEAYLlHAEBBAQSBBDNjDlcJu3u
3mU7AHl9A8o8MBIGCysGAQQBguUcAQEFBAMCASowDAYDVR0TAQH/BAIwADAKBggq
hkjOPQQDAgNIADBFAiA3k3aAUVtLhDHLXOgY2kRnK2hrbRgf2EKdTDLJ1Ds/RAIh
AOmIblhI3ALCHOaO0IO7YlMpw/lSTvFYv3qwO3m7H8Dc
-----END CERTIFICATE-----

The attributes above are structured within this certificate as such:

30 21                                    -- SEQUENCE
  06 0B 2B 06 01 04 01 82 E5 1C 01 01 04 -- OID 1.3.6.1.4.1.45724.1.1.4
  04 12                                  -- OCTET STRING
    04  10                               -- OCTET STRING
      CD 8C 39 5C 26 ED EE DE            -- AAGUID cd8c395c-26ed-eede-653b-00797d03ca3c
      65 3B 00 79 7D 03 CA 3C 

30 12                                    -- SEQUENCE
  06 0B 2B 06 01 04 01 82 E5 1C 01 01 05 -- OID 1.3.6.1.4.1.45724.1.1.5
  04 03                                  -- OCTET STRING
    02 01                                -- INTEGER
      2A                                 -- Firmware version: 42

8.2.2. Certificate Requirements for Enterprise Packed Attestation Statements

The Extension OID 1.3.6.1.4.1.45724.1.1.2 ( id-fido-gen-ce-sernum ) MAY additionally be present in packed attestations for enterprise use. If present, this extension MUST indicate a unique octet string value per device against a particular AAGUID. This value MUST remain constant through factory resets, but MAY be distinct from any other serial number or other hardware identifier associated with the device. This extension MUST NOT be marked as critical, and the corresponding value is encoded as an OCTET STRING. This extension MUST NOT be present in non-enterprise attestations.

8.3. TPM Attestation Statement Format

This attestation statement format is generally used by authenticators that use a Trusted Platform Module as their cryptographic engine.

Attestation statement format identifier

tpm

Attestation types supported

AttCA

Syntax

The syntax of a TPM Attestation statement is as follows:

$$attStmtType // = (
                       fmt: "tpm",
                       attStmt: tpmStmtFormat
                   )

tpmStmtFormat = {
                    ver: "2.0",
                    (
                        alg: COSEAlgorithmIdentifier,
                        x5c: [ aikCert: bytes, * (caCert: bytes) ]
                    )
                    sig: bytes,
                    certInfo: bytes,
                    pubArea: bytes
                }

The semantics of the above fields are as follows:

ver

The version of the TPM specification to which the signature conforms.

alg

A COSEAlgorithmIdentifier containing the identifier of the algorithm used to generate the attestation signature.

x5c

aikCert followed by its certificate chain, in X.509 encoding.

aikCert

The AIK certificate used for the attestation, in X.509 encoding.

sig

The attestation signature, in the form of a TPMT_SIGNATURE structure as specified in [TPMv2-Part2] section 11.3.4.

certInfo

The TPMS_ATTEST structure over which the above signature was computed, as specified in [TPMv2-Part2] section 10.12.8.

pubArea

The TPMT_PUBLIC structure (see [TPMv2-Part2] section 12.2.4) used by the TPM to represent the credential public key.

Signing procedure

Let authenticatorData denote the authenticator data for the attestation, and let clientDataHash denote the hash of the serialized client data.

Concatenate authenticatorData and clientDataHash to form attToBeSigned.

Generate a signature using the procedure specified in [TPMv2-Part3] Section 18.2, using the attestation private key and setting the extraData parameter to the digest of attToBeSigned using the hash algorithm corresponding to the "alg" signature algorithm. (For the "RS256" algorithm, this would be a SHA-256 digest.)

Set the pubArea field to the public area of the credential public key (the TPMT_PUBLIC structure), the certInfo field (the TPMS_ATTEST structure) to the output parameter of the same name, and the sig field to the signature obtained from the above procedure.

Note: If the pubArea is read from the TPM using the TPM2_ReadPublic command, that command returns a TPM2B_PUBLIC structure. TPM2B_PUBLIC is two bytes of length followed by the TPMT_PUBLIC structure. The two bytes of length must be removed prior to putting this into the pubArea.

Verification procedure

Given the verification procedure inputs attStmt, authenticatorData and clientDataHash, the verification procedure is as follows:

Verify that attStmt is valid CBOR conforming to the syntax defined above and perform CBOR decoding on it to extract the contained fields.

Verify that the public key specified by the parameters and unique fields of pubArea is identical to the credentialPublicKey in the attestedCredentialData in authenticatorData.

Concatenate authenticatorData and clientDataHash to form attToBeSigned.

Verify integrity of certInfo

  • Verify that x5c is present.

  • Verify that aikCert meets the requirements in § 8.3.1 TPM Attestation Statement Certificate Requirements.

  • If aikCert contains an extension with OID 1.3.6.1.4.1.45724.1.1.4 (id-fido-gen-ce-aaguid) verify that the value of this extension matches the aaguid in authenticatorData.

  • Verify the sig is a valid signature over certInfo using the attestation public key in aikCert with the algorithm specified in alg.

Validate that certInfo is valid: Note: certInfo is a TPMS_ATTEST structure.

  • Verify that magic is set to TPM_GENERATED_VALUE.

  • Verify that type is set to TPM_ST_ATTEST_CERTIFY.

  • Verify that extraData is set to the hash of attToBeSigned using the hash algorithm employed in "alg".

  • Verify that attested contains a TPMS_CERTIFY_INFO structure as specified in [TPMv2-Part2] section 10.12.3, whose name field contains a valid Name for pubArea, as computed using the procedure specified in [TPMv2-Part1] section 16 using the nameAlg in the pubArea.

    Note: The TPM will always return TPMS_CERTIFY_INFO structure with the same nameAlg in the name as the nameAlg in pubArea.

    Note: The remaining fields in the "Standard Attestation Structure" [TPMv2-Part1] section 31.2, i.e., qualifiedSigner, clockInfo and firmwareVersion are ignored. Depending on the properties of the aikCert key used, these fields may be obfuscated. If valid, these MAY be used as an input to risk engines.

  • If successful, return implementation-specific values representing attestation type AttCA and attestation trust path x5c.

8.3.1. TPM Attestation Statement Certificate Requirements

TPM attestation certificate MUST have the following fields/extensions:

8.4. Android Key Attestation Statement Format

When the authenticator in question is a platform authenticator on the Android "N" or later platform, the attestation statement is based on the Android key attestation. In these cases, the attestation statement is produced by a component running in a secure operating environment, but the authenticator data for the attestation is produced outside this environment. The WebAuthn Relying Party is expected to check that the authenticator data claimed to have been used for the attestation is consistent with the fields of the attestation certificate’s extension data.

Attestation statement format identifier

android-key

Attestation types supported

Basic

Syntax

An Android key attestation statement consists simply of the Android attestation statement, which is a series of DER encoded X.509 certificates. See the Android developer documentation. Its syntax is defined as follows:

$$attStmtType //= (
                      fmt: "android-key",
                      attStmt: androidStmtFormat
                  )

androidStmtFormat = {
                      alg: COSEAlgorithmIdentifier,
                      sig: bytes,
                      x5c: [ credCert: bytes, * (caCert: bytes) ]
                    }

Signing procedure

Let authenticatorData denote the authenticator data for the attestation, and let clientDataHash denote the hash of the serialized client data.

Request an Android Key Attestation by calling keyStore.getCertificateChain(myKeyUUID) providing clientDataHash as the challenge value (e.g., by using setAttestationChallenge). Set x5c to the returned value.

The authenticator produces sig by concatenating authenticatorData and clientDataHash, and signing the result using the credential private key. It sets alg to the algorithm of the signature format.

Verification procedure

Given the verification procedure inputs attStmt, authenticatorData and clientDataHash, the verification procedure is as follows:

  • Verify that attStmt is valid CBOR conforming to the syntax defined above and perform CBOR decoding on it to extract the contained fields.

  • Verify that sig is a valid signature over the concatenation of authenticatorData and clientDataHash using the public key in the first certificate in x5c with the algorithm specified in alg.

  • Verify that the public key in the first certificate in x5c matches the credentialPublicKey in the attestedCredentialData in authenticatorData.

  • Verify that the attestationChallenge field in the attestation certificate extension data is identical to clientDataHash.

  • Verify the following using the appropriate authorization list from the attestation certificate extension data:

    • The AuthorizationList.allApplications field is not present on either authorization list (softwareEnforced nor teeEnforced), since PublicKeyCredential MUST be scoped to the RP ID.

    • For the following, use only the teeEnforced authorization list if the RP wants to accept only keys from a trusted execution environment, otherwise use the union of teeEnforced and softwareEnforced.

      • The value in the AuthorizationList.origin field is equal to KM_ORIGIN_GENERATED.

      • The value in the AuthorizationList.purpose field is equal to KM_PURPOSE_SIGN.

  • If successful, return implementation-specific values representing attestation type Basic and attestation trust path x5c.

8.4.1. Android Key Attestation Statement Certificate Requirements

Android Key Attestation attestation certificate's android key attestation certificate extension data is identified by the OID 1.3.6.1.4.1.11129.2.1.17, and its schema is defined in the Android developer documentation.

8.5. Android SafetyNet Attestation Statement Format

Note: This format is deprecated and is expected to be removed in a future revision of this document.

When the authenticator is a platform authenticator on certain Android platforms, the attestation statement may be based on the SafetyNet API. In this case the authenticator data is completely controlled by the caller of the SafetyNet API (typically an application running on the Android platform) and the attestation statement provides some statements about the health of the platform and the identity of the calling application (see SafetyNet Documentation for more details).

Attestation statement format identifier

android-safetynet

Attestation types supported

Basic

Syntax

The syntax of an Android Attestation statement is defined as follows:

$$attStmtType //= (
                      fmt: "android-safetynet",
                      attStmt: safetynetStmtFormat
                  )

safetynetStmtFormat = {
                          ver: text,
                          response: bytes
                      }

The semantics of the above fields are as follows:

ver

The version number of Google Play Services responsible for providing the SafetyNet API.

response

The UTF-8 encoded result of the getJwsResult() call of the SafetyNet API. This value is a JWS [RFC7515] object (see SafetyNet online documentation) in Compact Serialization.

Signing procedure

Let authenticatorData denote the authenticator data for the attestation, and let clientDataHash denote the hash of the serialized client data.

Concatenate authenticatorData and clientDataHash, perform SHA-256 hash of the concatenated string, and let the result of the hash form attToBeSigned.

Request a SafetyNet attestation, providing attToBeSigned as the nonce value. Set response to the result, and ver to the version of Google Play Services running in the authenticator.

Verification procedure

Given the verification procedure inputs attStmt, authenticatorData and clientDataHash, the verification procedure is as follows:

  • Verify that attStmt is valid CBOR conforming to the syntax defined above and perform CBOR decoding on it to extract the contained fields.

  • Verify that response is a valid SafetyNet response of version ver by following the steps indicated by the SafetyNet online documentation. As of this writing, there is only one format of the SafetyNet response and ver is reserved for future use.

  • Verify that the nonce attribute in the payload of response is identical to the Base64 encoding of the SHA-256 hash of the concatenation of authenticatorData and clientDataHash.

  • Verify that the SafetyNet response actually came from the SafetyNet service by following the steps in the SafetyNet online documentation.

  • If successful, return implementation-specific values representing attestation type Basic and attestation trust path x5c.

8.6. FIDO U2F Attestation Statement Format

This attestation statement format is used with FIDO U2F authenticators using the formats defined in [FIDO-U2F-Message-Formats].

Attestation statement format identifier

fido-u2f

Attestation types supported

Basic, AttCA

Syntax

The syntax of a FIDO U2F attestation statement is defined as follows:

$$attStmtType //= (
                      fmt: "fido-u2f",
                      attStmt: u2fStmtFormat
                  )

u2fStmtFormat = {
                    x5c: [ attestnCert: bytes ],
                    sig: bytes
                }

The semantics of the above fields are as follows:

x5c

A single element array containing the attestation certificate in X.509 format.

sig

The attestation signature. The signature was calculated over the (raw) U2F registration response message [FIDO-U2F-Message-Formats] received by the client from the authenticator.

Signing procedure

If the credential public key of the attested credential is not of algorithm -7 ("ES256"), stop and return an error. Otherwise, let authenticatorData denote the authenticator data for the attestation, and let clientDataHash denote the hash of the serialized client data. (Since SHA-256 is used to hash the serialized client data, clientDataHash will be 32 bytes long.)

Generate a Registration Response Message as specified in [FIDO-U2F-Message-Formats] Section 4.3, with the application parameter set to the SHA-256 hash of the RP ID that the given credential is scoped to, the challenge parameter set to clientDataHash, and the key handle parameter set to the credential ID of the given credential. Set the raw signature part of this Registration Response Message (i.e., without the user public key, key handle, and attestation certificates) as sig and set the attestation certificates of the attestation public key as x5c.

Verification procedure

Given the verification procedure inputs attStmt, authenticatorData and clientDataHash, the verification procedure is as follows:

  1. Verify that attStmt is valid CBOR conforming to the syntax defined above and perform CBOR decoding on it to extract the contained fields.

  2. Check that x5c has exactly one element and let attCert be that element. Let certificate public key be the public key conveyed by attCert. If certificate public key is not an Elliptic Curve (EC) public key over the P-256 curve, terminate this algorithm and return an appropriate error.

  3. Extract the claimed rpIdHash from authenticatorData, and the claimed credentialId and credentialPublicKey from authenticatorData.attestedCredentialData.

  4. Convert the COSE_KEY formatted credentialPublicKey (see Section 7 of [RFC9052]) to Raw ANSI X9.62 public key format (see ALG_KEY_ECC_X962_RAW in Section 3.6.2 Public Key Representation Formats of [FIDO-Registry]).

    • Let x be the value corresponding to the "-2" key (representing x coordinate) in credentialPublicKey, and confirm its size to be of 32 bytes. If size differs or "-2" key is not found, terminate this algorithm and return an appropriate error.

    • Let y be the value corresponding to the "-3" key (representing y coordinate) in credentialPublicKey, and confirm its size to be of 32 bytes. If size differs or "-3" key is not found, terminate this algorithm and return an appropriate error.

    • Let publicKeyU2F be the concatenation 0x04 || x || y.

      Note: This signifies uncompressed ECC key format.

  5. Let verificationData be the concatenation of (0x00 || rpIdHash || clientDataHash || credentialId || publicKeyU2F) (see Section 4.3 of [FIDO-U2F-Message-Formats]).

  6. Verify the sig using verificationData and the certificate public key per section 4.1.4 of [SEC1] with SHA-256 as the hash function used in step two.

  7. Optionally, inspect x5c and consult externally provided knowledge to determine whether attStmt conveys a Basic or AttCA attestation.

  8. If successful, return implementation-specific values representing attestation type Basic, AttCA or uncertainty, and attestation trust path x5c.

8.7. None Attestation Statement Format

The none attestation statement format is used to replace any authenticator-provided attestation statement when a WebAuthn Relying Party indicates it does not wish to receive attestation information, see § 5.4.7 Attestation Conveyance Preference Enumeration (enum AttestationConveyancePreference).

The authenticator MAY also directly generate attestation statements of this format if the authenticator does not support attestation.

Attestation statement format identifier

none

Attestation types supported

None

Syntax

The syntax of a none attestation statement is defined as follows:

$$attStmtType //= (
                      fmt: "none",
                      attStmt: emptyMap
                  )

emptyMap = {}
Signing procedure

Return the fixed attestation statement defined above.

Verification procedure

Return implementation-specific values representing attestation type None and an empty attestation trust path.

8.8. Apple Anonymous Attestation Statement Format

This attestation statement format is exclusively used by Apple for certain types of Apple devices that support WebAuthn.

Attestation statement format identifier

apple

Attestation types supported

Anonymization CA

Syntax

The syntax of an Apple attestation statement is defined as follows:

$$attStmtType //= (
                      fmt: "apple",
                      attStmt: appleStmtFormat
                  )

appleStmtFormat = {
                      x5c: [ credCert: bytes, * (caCert: bytes) ]
                  }

The semantics of the above fields are as follows:

x5c

credCert followed by its certificate chain, each encoded in X.509 format.

credCert

The credential public key certificate used for attestation, encoded in X.509 format.

Signing procedure
  1. Let authenticatorData denote the authenticator data for the attestation, and let clientDataHash denote the hash of the serialized client data.

  2. Concatenate authenticatorData and clientDataHash to form nonceToHash.

  3. Perform SHA-256 hash of nonceToHash to produce nonce.

  4. Let Apple anonymous attestation CA generate an X.509 certificate for the credential public key and include the nonce as a certificate extension with OID 1.2.840.113635.100.8.2. credCert denotes this certificate. The credCert thus serves as a proof of the attestation, and the included nonce proves the attestation is live. In addition to that, the nonce also protects the integrity of the authenticatorData and client data.

  5. Set x5c to credCert followed by its certificate chain.

Verification procedure

Given the verification procedure inputs attStmt, authenticatorData and clientDataHash, the verification procedure is as follows:

  1. Verify that attStmt is valid CBOR conforming to the syntax defined above and perform CBOR decoding on it to extract the contained fields.

  2. Concatenate authenticatorData and clientDataHash to form nonceToHash.

  3. Perform SHA-256 hash of nonceToHash to produce nonce.

  4. Verify that nonce equals the value of the extension with OID 1.2.840.113635.100.8.2 in credCert.

  5. Verify that the credential public key equals the Subject Public Key of credCert.

  6. If successful, return implementation-specific values representing attestation type Anonymization CA and attestation trust path x5c.

8.9. Compound Attestation Statement Format

The "compound" attestation statement format is used to pass multiple, self-contained attestation statements in a single ceremony.

Attestation statement format identifier

compound

Attestation types supported

Any. See § 6.5.3 Attestation Types.

Syntax

The syntax of a compound attestation statement is defined as follows:

$$attStmtType //= (
                      fmt: "compound",
                      attStmt: [2* nonCompoundAttStmt]
                  )

nonCompoundAttStmt = { $$attStmtType } .within { fmt: text .ne "compound", * any => any }
Signing procedure

Not applicable

Verification procedure

Given the verification procedure inputs attStmt, authenticatorData and clientDataHash, the verification procedure is as follows:

  1. For each subStmt of attStmt, evaluate the verification procedure corresponding to the attestation statement format identifier subStmt.fmt with verification procedure inputs subStmt, authenticatorData and clientDataHash.

    If validation fails for one or more subStmt, decide the appropriate result based on Relying Party policy.

  2. If sufficiently many (as determined by Relying Party policy) items of attStmt verify successfully, return implementation-specific values representing any combination of outputs from successful verification procedures.

9. WebAuthn Extensions

The mechanism for generating public key credentials, as well as requesting and generating Authentication assertions, as defined in § 5 Web Authentication API, can be extended to suit particular use cases. Each case is addressed by defining a registration extension and/or an authentication extension.

Every extension is a client extension, meaning that the extension involves communication with and processing by the client. Client extensions define the following steps and data:

When creating a public key credential or requesting an authentication assertion, a WebAuthn Relying Party can request the use of a set of extensions. These extensions will be invoked during the requested operation if they are supported by the client and/or the WebAuthn Authenticator. The Relying Party sends the client extension input for each extension in the get() call (for authentication extensions) or create() call (for registration extensions) to the client. The client performs client extension processing for each extension that the client platform supports, and augments the client data as specified by each extension, by including the extension identifier and client extension output values.

An extension can also be an authenticator extension, meaning that the extension involves communication with and processing by the authenticator. Authenticator extensions define the following steps and data:

For authenticator extensions, as part of the client extension processing, the client also creates the CBOR authenticator extension input value for each extension (often based on the corresponding client extension input value), and passes them to the authenticator in the create() call (for registration extensions) or the get() call (for authentication extensions). These authenticator extension input values are represented in CBOR and passed as name-value pairs, with the extension identifier as the name, and the corresponding authenticator extension input as the value. The authenticator, in turn, performs additional processing for the extensions that it supports, and returns the CBOR authenticator extension output for each as specified by the extension. Since authenticator extension output is returned as part of the signed authenticator data, authenticator extensions MAY also specify an unsigned extension output, e.g. for cases where an output itself depends on authenticator data. Part of the client extension processing for authenticator extensions is to use the authenticator extension output and unsigned extension output as an input to creating the client extension output.

All WebAuthn Extensions are OPTIONAL for both clients and authenticators. Thus, any extensions requested by a Relying Party MAY be ignored by the client browser or OS and not passed to the authenticator at all, or they MAY be ignored by the authenticator. Ignoring an extension is never considered a failure in WebAuthn API processing, so when Relying Parties include extensions with any API calls, they MUST be prepared to handle cases where some or all of those extensions are ignored.

All WebAuthn Extensions MUST be defined in such a way that lack of support for them by the client or authenticator does not endanger the user’s security or privacy. For instance, if an extension requires client processing, it could be defined in a manner that ensures that a naïve pass-through that simply transcodes client extension inputs from JSON to CBOR will produce a semantically invalid authenticator extension input value, resulting in the extension being ignored by the authenticator. Since all extensions are OPTIONAL, this will not cause a functional failure in the API operation.

The IANA "WebAuthn Extension Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809] can be consulted for an up-to-date list of registered WebAuthn Extensions.

9.1. Extension Identifiers

Extensions are identified by a string, called an extension identifier, chosen by the extension author.

Extension identifiers SHOULD be registered in the IANA "WebAuthn Extension Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809]. All registered extension identifiers are unique amongst themselves as a matter of course.

Unregistered extension identifiers SHOULD aim to be globally unique, e.g., by including the defining entity such as myCompany_extension.

All extension identifiers MUST be a maximum of 32 octets in length and MUST consist only of printable USASCII characters, excluding backslash and doublequote, i.e., VCHAR as defined in [RFC5234] but without %x22 and %x5c. Implementations MUST match WebAuthn extension identifiers in a case-sensitive fashion.

Extensions that may exist in multiple versions should take care to include a version in their identifier. In effect, different versions are thus treated as different extensions, e.g., myCompany_extension_01

§ 10 Defined Extensions defines an additional set of extensions and their identifiers. See the IANA "WebAuthn Extension Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809] for an up-to-date list of registered WebAuthn Extension Identifiers.

9.2. Defining Extensions

A definition of an extension MUST specify an extension identifier, a client extension input argument to be sent via the get() or create() call, the client extension processing rules, and a client extension output value. If the extension communicates with the authenticator (meaning it is an authenticator extension), it MUST also specify the CBOR authenticator extension input argument sent via the authenticatorGetAssertion or authenticatorMakeCredential call, the authenticator extension processing rules, and the CBOR authenticator extension output value. Extensions MAY specify unsigned extension outputs.

Any client extension that is processed by the client MUST return a client extension output value so that the WebAuthn Relying Party knows that the extension was honored by the client. Similarly, any extension that requires authenticator processing MUST return an authenticator extension output to let the Relying Party know that the extension was honored by the authenticator. If an extension does not otherwise require any result values, it SHOULD be defined as returning a JSON Boolean client extension output result, set to true to signify that the extension was understood and processed. Likewise, any authenticator extension that does not otherwise require any result values MUST return a value and SHOULD return a CBOR Boolean authenticator extension output result, set to true to signify that the extension was understood and processed.

9.3. Extending Request Parameters

An extension defines one or two request arguments. The client extension input, which is a value that can be encoded in JSON, is passed from the WebAuthn Relying Party to the client in the get() or create() call, while the CBOR authenticator extension input is passed from the client to the authenticator for authenticator extensions during the processing of these calls.

A Relying Party simultaneously requests the use of an extension and sets its client extension input by including an entry in the extensions option to the create() or get() call. The entry key is the extension identifier and the value is the client extension input.

Note: Other documents have specified extensions where the extension input does not always use the extension identifier as the entry key. The above convention still applies to new extensions.

var assertionPromise = navigator.credentials.get({
    publicKey: {
        // Other members omitted for brevity
        extensions: {
            // An "entry key" identifying the "webauthnExample_foobar" extension,
            // whose value is a map with two input parameters:
            "webauthnExample_foobar": {
              foo: 42,
              bar: "barfoo"
            }
        }
    }
});

Extension definitions MUST specify the valid values for their client extension input. Clients SHOULD ignore extensions with an invalid client extension input. If an extension does not require any parameters from the Relying Party, it SHOULD be defined as taking a Boolean client argument, set to true to signify that the extension is requested by the Relying Party.

Extensions that only affect client processing need not specify authenticator extension input. Extensions that have authenticator processing MUST specify the method of computing the authenticator extension input from the client extension input, and MUST define extensions for the CDDL types AuthenticationExtensionsAuthenticatorInputs and AuthenticationExtensionsAuthenticatorOutputs by defining an additional choice for the $$extensionInput and $$extensionOutput group sockets using the extension identifier as the entry key. Extensions that do not require input parameters, and are thus defined as taking a Boolean client extension input value set to true, SHOULD define the authenticator extension input also as the constant Boolean value true (CBOR major type 7, value 21).

The following example defines that an extension with identifier webauthnExample_foobar takes an unsigned integer as authenticator extension input, and returns an array of at least one byte string as authenticator extension output:

$$extensionInput //= (
  webauthnExample_foobar: uint
)
$$extensionOutput //= (
  webauthnExample_foobar: [+ bytes]
)

Because some authenticators communicate over low-bandwidth links such as Bluetooth Low-Energy or NFC, extensions SHOULD aim to define authenticator arguments that are as small as possible.

9.4. Client Extension Processing

Extensions MAY define additional processing requirements on the client during the creation of credentials or the generation of an assertion. The client extension input for the extension is used as an input to this client processing. For each supported client extension, the client adds an entry to the clientExtensions map with the extension identifier as the key, and the extension’s client extension input as the value.

Likewise, the client extension outputs are represented as a dictionary in the result of getClientExtensionResults() with extension identifiers as keys, and the client extension output value of each extension as the value. Like the client extension input, the client extension output is a value that can be encoded in JSON. There MUST NOT be any values returned for ignored extensions.

Extensions that require authenticator processing MUST define the process by which the client extension input can be used to determine the CBOR authenticator extension input and the process by which the CBOR authenticator extension output, and the unsigned extension output if used, can be used to determine the client extension output.

9.5. Authenticator Extension Processing

The CBOR authenticator extension input value of each processed authenticator extension is included in the extensions parameter of the authenticatorMakeCredential and authenticatorGetAssertion operations. The extensions parameter is a CBOR map where each key is an extension identifier and the corresponding value is the authenticator extension input for that extension.

Likewise, the extension output is represented in the extensions part of the authenticator data. The extensions part of the authenticator data is a CBOR map where each key is an extension identifier and the corresponding value is the authenticator extension output for that extension.

Unsigned extension outputs are represented independently from authenticator data and returned by authenticators as a separate map, keyed with the same extension identifier. This map only contains entries for authenticator extensions that make use of unsigned outputs. Unsigned outputs are useful when extensions output a signature over the authenticator data (because otherwise a signature would have to sign over itself, which isn’t possible) or when some extension outputs should not be sent to the Relying Party.

Note: In [FIDO-CTAP] unsigned extension outputs are returned as a CBOR map in a top-level field named unsignedExtensionOutputs from both authenticatorMakeCredential and authenticatorGetAssertion.

For each supported extension, the authenticator extension processing rule for that extension is used create the authenticator extension output, and unsigned extension output if used, from the authenticator extension input and possibly also other inputs. There MUST NOT be any values returned for ignored extensions.

10. Defined Extensions

This section and its subsections define an additional set of extensions to be registered in the IANA "WebAuthn Extension Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809]. These MAY be implemented by user agents targeting broad interoperability.

10.1. Client Extensions

This section defines extensions that are only client extensions.

10.1.1. FIDO AppID Extension (appid)

This extension allows WebAuthn Relying Parties that have previously registered a credential using the legacy FIDO U2F JavaScript API [FIDOU2FJavaScriptAPI] to request an assertion. The FIDO APIs use an alternative identifier for Relying Parties called an AppID [FIDO-APPID], and any credentials created using those APIs will be scoped to that identifier. Without this extension, they would need to be re-registered in order to be scoped to an RP ID.

In addition to setting the appid extension input, using this extension requires some additional processing by the Relying Party in order to allow users to authenticate using their registered U2F credentials:

  1. List the desired U2F credentials in the allowCredentials option of the get() method:

    • Set the type members to public-key.

    • Set the id members to the respective U2F key handles of the desired credentials. Note that U2F key handles commonly use base64url encoding but must be decoded to their binary form when used in id.

    allowCredentials MAY contain a mixture of both WebAuthn credential IDs and U2F key handles; stating the appid via this extension does not prevent the user from using a WebAuthn-registered credential scoped to the RP ID stated in rpId.

  2. When verifying the assertion, expect that the rpIdHash MAY be the hash of the AppID instead of the RP ID.

This extension does not allow FIDO-compatible credentials to be created. Thus, credentials created with WebAuthn are not backwards compatible with the FIDO JavaScript APIs.

Note: appid should be set to the AppID that the Relying Party previously used in the legacy FIDO APIs. This might not be the same as the result of translating the Relying Party's WebAuthn RP ID to the AppID format, e.g., the previously used AppID may have been "https://accounts.example.com" but the currently used RP ID might be "example.com".

Extension identifier

appid

Operation applicability

Authentication

Client extension input

A single DOMString specifying a FIDO AppID.

partial dictionary AuthenticationExtensionsClientInputs {
  DOMString appid;
};
Client extension processing
  1. Let facetId be the result of passing the caller’s origin to the FIDO algorithm for determining the FacetID of a calling application.

  2. Let appId be the extension input.

  3. Pass facetId and appId to the FIDO algorithm for determining if a caller’s FacetID is authorized for an AppID. If that algorithm rejects appId then return a "SecurityError" DOMException.

  4. When building allowCredentialDescriptorList, if a U2F authenticator indicates that a credential is inapplicable (i.e. by returning SW_WRONG_DATA) then the client MUST retry with the U2F application parameter set to the SHA-256 hash of appId. If this results in an applicable credential, the client MUST include the credential in allowCredentialDescriptorList. The value of appId then replaces the rpId parameter of authenticatorGetAssertion.

  5. Let output be the Boolean value false.

  6. When creating assertionCreationData, if the assertion was created by a U2F authenticator with the U2F application parameter set to the SHA-256 hash of appId instead of the SHA-256 hash of the RP ID, set output to true.

Note: In practice, several implementations do not implement steps four and onward of the algorithm for determining if a caller’s FacetID is authorized for an AppID. Instead, in step three, the comparison on the host is relaxed to accept hosts on the same site.

Client extension output

Returns the value of output. If true, the AppID was used and thus, when verifying the assertion, the Relying Party MUST expect the rpIdHash to be the hash of the AppID, not the RP ID.

partial dictionary AuthenticationExtensionsClientOutputs {
  boolean appid;
};
Authenticator extension input

None.

Authenticator extension processing

None.

Authenticator extension output

None.

10.1.2. FIDO AppID Exclusion Extension (appidExclude)

This registration extension allows WebAuthn Relying Parties to exclude authenticators that contain specified credentials that were created with the legacy FIDO U2F JavaScript API [FIDOU2FJavaScriptAPI].

During a transition from the FIDO U2F JavaScript API, a Relying Party may have a population of users with legacy credentials already registered. The appid extension allows the sign-in flow to be transitioned smoothly but, when transitioning the registration flow, the excludeCredentials field will not be effective in excluding authenticators with legacy credentials because its contents are taken to be WebAuthn credentials. This extension directs client platforms to consider the contents of excludeCredentials as both WebAuthn and legacy FIDO credentials. Note that U2F key handles commonly use base64url encoding but must be decoded to their binary form when used in excludeCredentials.

Extension identifier

appidExclude

Operation applicability

Registration

Client extension input

A single DOMString specifying a FIDO AppID.

partial dictionary AuthenticationExtensionsClientInputs {
  DOMString appidExclude;
};
Client extension processing

When creating a new credential:

  1. Just after establishing the RP ID perform these steps:

    1. Let facetId be the result of passing the caller’s origin to the FIDO algorithm for determining the FacetID of a calling application.

    2. Let appId be the value of the extension input appidExclude.

    3. Pass facetId and appId to the FIDO algorithm for determining if a caller’s FacetID is authorized for an AppID. If the latter algorithm rejects appId then return a "SecurityError" DOMException and terminate the creating a new credential algorithm as well as these steps.

      Note: In practice, several implementations do not implement steps four and onward of the algorithm for determining if a caller’s FacetID is authorized for an AppID. Instead, in step three, the comparison on the host is relaxed to accept hosts on the same site.

    4. Otherwise, continue with normal processing.

  2. Just prior to invoking authenticatorMakeCredential perform these steps:

    1. If authenticator supports the U2F protocol [FIDO-U2F-Message-Formats], then for each credential descriptor C in excludeCredentialDescriptorList:

      1. Check whether C was created using U2F on authenticator by sending a U2F_AUTHENTICATE message to authenticator whose "five parts" are set to the following values:

        control byte

        0x07 ("check-only")

        challenge parameter

        32 random bytes

        application parameter

        SHA-256 hash of appId

        key handle length

        The length of C.id (in bytes)

        key handle

        The value of C.id, i.e., the credential id.

      2. If authenticator responds with message:error:test-of-user-presence-required (i.e., success): cease normal processing of this authenticator and indicate in a platform-specific manner that the authenticator is inapplicable. For example, this could be in the form of UI, or could involve requesting user consent from authenticator and, upon receipt, treating it as if the authenticator had returned InvalidStateError. Requesting user consent can be accomplished by sending another U2F_AUTHENTICATE message to authenticator as above except for setting control byte to 0x03 ("enforce-user-presence-and-sign"), and ignoring the response.

    2. Continue with normal processing.

Client extension output

Returns the value true to indicate to the Relying Party that the extension was acted upon.

partial dictionary AuthenticationExtensionsClientOutputs {
  boolean appidExclude;
};
Authenticator extension input

None.

Authenticator extension processing

None.

Authenticator extension output

None.

10.1.3. Credential Properties Extension (credProps)

This client registration extension facilitates reporting certain credential properties known by the client to the requesting WebAuthn Relying Party upon creation of a public key credential source as a result of a registration ceremony.

At this time, one credential property is defined: the client-side discoverable credential property.

Extension identifier

credProps

Operation applicability

Registration

Client extension input

The Boolean value true to indicate that this extension is requested by the Relying Party.

partial dictionary AuthenticationExtensionsClientInputs {
    boolean credProps;
};
Client extension processing

Set rk to the value of the requireResidentKey parameter that was used in the invocation of the authenticatorMakeCredential operation.

Client extension output

Set clientExtensionResults["credProps"]["rk"] to the value of the requireResidentKey parameter that was used in the invocation of the authenticatorMakeCredential operation.

dictionary CredentialPropertiesOutput {
    boolean rk;
};

partial dictionary AuthenticationExtensionsClientOutputs {
    CredentialPropertiesOutput credProps;
};
rk, of type boolean

This OPTIONAL property, known abstractly as the client-side discoverable credential property or as the resident key credential property, is a Boolean value indicating whether the PublicKeyCredential returned as a result of a registration ceremony is a client-side discoverable credential. If rk is true, the credential is a discoverable credential. If rk is false, the credential is a server-side credential. If rk is not present, it is not known whether the credential is a discoverable credential or a server-side credential.

Note: Some authenticators create discoverable credentials even when not requested by the client platform. Because of this, client platforms may be forced to omit the rk property because they lack the assurance to be able to set it to false. Relying Parties should assume that, if the credProps extension is supported, then client platforms will endeavour to populate the rk property. Therefore a missing rk indicates that the created credential is most likely a non-discoverable credential.

Authenticator extension input

None.

Authenticator extension processing

None.

Authenticator extension output

None.

10.1.4. Pseudo-random function extension (prf)

This client registration extension and authentication extension allows a Relying Party to evaluate outputs from a pseudo-random function (PRF) associated with a credential. The PRFs provided by this extension map from BufferSources of any length to 32-byte BufferSources.

As a motivating example, PRF outputs could be used as symmetric keys to encrypt user data. Such encrypted data would be inaccessible without the ability to get assertions from the associated credential. By using the provision below to evaluate the PRF at two inputs in a single assertion operation, the encryption key could be periodically rotated during assertions by choosing a fresh, random input and reencrypting under the new output. If the evaluation inputs are unpredictable then even an attacker who could satisfy user verification, and who had time-limited access to the authenticator, could not learn the encryption key without also knowing the correct PRF input.

This extension is implemented on top of the [FIDO-CTAP] hmac-secret extension. It is a separate client extension because hmac-secret requires that inputs and outputs be encrypted in a manner that only the user agent can perform, and to provide separation between uses by WebAuthn and any uses by the underlying platform. This separation is achieved by hashing the provided PRF inputs with a context string to prevent evaluation of the PRFs for arbitrary inputs.

The hmac-secret extension provides two PRFs per credential: one which is used for requests where user verification is performed and another for all other requests. This extension only exposes a single PRF per credential and, when implementing on top of hmac-secret, that PRF MUST be the one used for when user verification is performed. This overrides the UserVerificationRequirement if neccessary.

Note: This extension may be implemented for authenticators that do not use [FIDO-CTAP] so long as the behavior observed by a Relying Party is identical.

Extension identifier

prf

Operation applicability

Registration and authentication

Client extension input
dictionary AuthenticationExtensionsPRFValues {
    required BufferSource first;
    BufferSource second;
};

dictionary AuthenticationExtensionsPRFInputs {
    AuthenticationExtensionsPRFValues eval;
    record<DOMString, AuthenticationExtensionsPRFValues> evalByCredential;
};

partial dictionary AuthenticationExtensionsClientInputs {
    AuthenticationExtensionsPRFInputs prf;
};
eval, of type AuthenticationExtensionsPRFValues

One or two inputs on which to evaluate PRF. Not all authenticators support evaluating the PRFs during credential creation so outputs may, or may not, be provided. If not, then an assertion is needed in order to obtain the outputs.

evalByCredential, of type record<DOMString, AuthenticationExtensionsPRFValues>

A record mapping base64url encoded credential IDs to PRF inputs to evaluate for that credential. Only applicable during assertions when allowCredentials is not empty.

Client extension processing (registration)
  1. If evalByCredential is present, return a DOMException whose name is “NotSupportedError”.

  2. Set hmac-secret to true in the authenticator extensions input.

  3. If eval is present and a future extension to [FIDO-CTAP] permits evaluation of the PRF at creation time, configure hmac-secret inputs accordingly:

    • Let salt1 be the value of SHA-256(UTF8Encode("WebAuthn PRF") || 0x00 || eval.first).

    • If eval.second is present, let salt2 be the value of SHA-256(UTF8Encode("WebAuthn PRF") || 0x00 || eval.second).

  4. Set enabled to the value of hmac-secret in the authenticator extensions output. If not present, set enabled to false.

  5. Set results to the decrypted PRF result(s), if any.

Client extension processing (authentication)
  1. If evalByCredential is not empty but allowCredentials is empty, return a DOMException whose name is “NotSupportedError”.

  2. If any key in evalByCredential is the empty string, or is not a valid base64url encoding, or does not equal the id of some element of allowCredentials after performing base64url decoding, then return a DOMException whose name is “SyntaxError”.

  3. Initialize the prf extension output to an empty dictionary.

  4. Let ev be null, and try to find any applicable PRF input(s):

    1. If evalByCredential is present and contains an entry whose key is the base64url encoding of the credential ID that will be returned, let ev be the value of that entry.

    2. If ev is null and eval is present, then let ev be the value of eval.

  5. If ev is not null:

    1. Let salt1 be the value of SHA-256(UTF8Encode("WebAuthn PRF") || 0x00 || ev.first).

    2. If ev.second is present, let salt2 be the value of SHA-256(UTF8Encode("WebAuthn PRF") || 0x00 || ev.second).

    3. Send an hmac-secret extension to the authenticator using the values of salt1 and, if set, salt2 as the parameters of the same name in that process.

    4. Decrypt the extension result and set results to the PRF result(s), if any.

Authenticator extension input / processing / output

This extension uses the [FIDO-CTAP] hmac-secret extension when communicating with the authenticator. It thus does not specify any direct authenticator interaction for Relying Parties.

Client extension output
dictionary AuthenticationExtensionsPRFOutputs {
    boolean enabled;
    AuthenticationExtensionsPRFValues results;
};

partial dictionary AuthenticationExtensionsClientOutputs {
    AuthenticationExtensionsPRFOutputs prf;
};
enabled, of type boolean

true if, and only if, the one or two PRFs are available for use with the created credential. This is only reported during registration and is not present in the case of authentication.

results, of type AuthenticationExtensionsPRFValues

The results of evaluating the PRF for the inputs given in eval or evalByCredential. Outputs may not be available during registration; see comments in eval.

For some use cases, for example if PRF outputs are used to derive encryption keys to use only on the client side, it may be necessary to omit this results output if the PublicKeyCredential is sent to a remote server, for example to perform the procedures in § 7 WebAuthn Relying Party Operations. Note in particular that the RegistrationResponseJSON and AuthenticationResponseJSON returned by PublicKeyCredential.toJSON() will include this results output if present.

10.1.5. Large blob storage extension (largeBlob)

This client registration extension and authentication extension allows a Relying Party to store opaque data associated with a credential. Since authenticators can only store small amounts of data, and most Relying Parties are online services that can store arbitrary amounts of state for a user, this is only useful in specific cases. For example, the Relying Party might wish to issue certificates rather than run a centralised authentication service.

Note: Relying Parties can assume that the opaque data will be compressed when being written to a space-limited device and so need not compress it themselves.

Since a certificate system needs to sign over the public key of the credential, and that public key is only available after creation, this extension does not add an ability to write blobs in the registration context. However, Relying Parties SHOULD use the registration extension when creating the credential if they wish to later use the authentication extension.

Since certificates are sizable relative to the storage capabilities of typical authenticators, user agents SHOULD consider what indications and confirmations are suitable to best guide the user in allocating this limited resource and prevent abuse.

Note: In order to interoperate, user agents storing large blobs on authenticators using [FIDO-CTAP] are expected to use the provisions detailed in that specification for storing large, per-credential blobs.

Note: Roaming authenticators that use [FIDO-CTAP] as their cross-platform transport protocol only support this Large Blob extension for discoverable credentials, and might return an error unless authenticatorSelection.residentKey is set to preferred or required. However, authenticators that do not utilize [FIDO-CTAP] do not necessarily restrict this extension to discoverable credentials.

Extension identifier

largeBlob

Operation applicability

Registration and authentication

Client extension input
partial dictionary AuthenticationExtensionsClientInputs {
    AuthenticationExtensionsLargeBlobInputs largeBlob;
};

enum LargeBlobSupport {
  "required",
  "preferred",
};

dictionary AuthenticationExtensionsLargeBlobInputs {
    DOMString support;
    boolean read;
    BufferSource write;
};
support, of type DOMString

A DOMString that takes one of the values of LargeBlobSupport. (See § 2.1.1 Enumerations as DOMString types.) Only valid during registration.

read, of type boolean

A boolean that indicates that the Relying Party would like to fetch the previously-written blob associated with the asserted credential. Only valid during authentication.

write, of type BufferSource

An opaque byte string that the Relying Party wishes to store with the existing credential. Only valid during authentication.

Client extension processing (registration)
  1. If read or write is present:

    1. Return a DOMException whose name is “NotSupportedError”.

  2. If support is present and has the value required:

    1. Set supported to true.

      Note: This is in anticipation of an authenticator capable of storing large blobs becoming available. It occurs during extension processing in step 12 of [[Create]](origin, options, sameOriginWithAncestors). The AuthenticationExtensionsLargeBlobOutputs will be abandoned if no satisfactory authenticator becomes available.

    2. If a candidate authenticator becomes available (step 22 of [[Create]](origin, options, sameOriginWithAncestors)) then, before evaluating any options, continue (i.e. ignore the candidate authenticator) if the candidate authenticator is not capable of storing large blobs.

  3. Otherwise (i.e. support is absent or has the value preferred):

    1. If an authenticator is selected and the selected authenticator supports large blobs, set supported to true, and false otherwise.

Client extension processing (authentication)
  1. If support is present:

    1. Return a DOMException whose name is “NotSupportedError”.

  2. If both read and write are present:

    1. Return a DOMException whose name is “NotSupportedError”.

  3. If read is present and has the value true:

    1. Initialize the client extension output, largeBlob.

    2. If any authenticator indicates success (in [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors)), attempt to read any largeBlob data associated with the asserted credential.

    3. If successful, set blob to the result.

      Note: If the read is not successful, largeBlob will be present in AuthenticationExtensionsClientOutputs but the blob member will not be present.

  4. If write is present:

    1. If allowCredentials does not contain exactly one element:

      1. Return a DOMException whose name is “NotSupportedError”.

    2. If the assertion operation is successful, attempt to store the contents of write on the authenticator, associated with the indicated credential.

    3. Set written to true if successful and false otherwise.

Client extension output
partial dictionary AuthenticationExtensionsClientOutputs {
    AuthenticationExtensionsLargeBlobOutputs largeBlob;
};

dictionary AuthenticationExtensionsLargeBlobOutputs {
    boolean supported;
    ArrayBuffer blob;
    boolean written;
};
supported, of type boolean

true if, and only if, the created credential supports storing large blobs. Only present in registration outputs.

blob, of type ArrayBuffer

The opaque byte string that was associated with the credential identified by rawId. Only valid if read was true.

written, of type boolean

A boolean that indicates that the contents of write were successfully stored on the authenticator, associated with the specified credential.

Authenticator extension processing

This extension directs the user-agent to cause the large blob to be stored on, or retrieved from, the authenticator. It thus does not specify any direct authenticator interaction for Relying Parties.

10.2. Authenticator Extensions

This section defines extensions that are both client extensions and authenticator extensions.

This section is currently empty.

11. User Agent Automation

For the purposes of user agent automation and web application testing, this document defines a number of [WebDriver] extension commands.

11.1. WebAuthn WebDriver Extension Capability

In order to advertise the availability of the extension commands defined below, a new extension capability is defined.

Capability Key Value Type Description
Virtual Authenticators Support "webauthn:virtualAuthenticators" boolean Indicates whether the endpoint node supports all Virtual Authenticators commands.

When validating capabilities, the extension-specific substeps to validate "webauthn:virtualAuthenticators" with value are the following:

  1. If value is not a boolean return a WebDriver Error with WebDriver error code invalid argument.

  2. Otherwise, let deserialized be set to value.

When matching capabilities, the extension-specific steps to match "webauthn:virtualAuthenticators" with value are the following:

  1. If value is true and the endpoint node does not support any of the Virtual Authenticators commands, the match is unsuccessful.

  2. Otherwise, the match is successful.

11.1.1. Authenticator Extension Capabilities

Additionally, extension capabilities are defined for every authenticator extension (i.e. those defining authenticator extension processing) defined in this specification:

Capability Key Value Type Description
Pseudo-Random Function Extension Support "webauthn:extension:prf" boolean Indicates whether the endpoint node WebAuthn WebDriver implementation supports the prf extension.
Large Blob Storage Extension Support "webauthn:extension:largeBlob" boolean Indicates whether the endpoint node WebAuthn WebDriver implementation supports the largeBlob extension.
credBlob Extension Support "webauthn:extension:credBlob" boolean Indicates whether the endpoint node WebAuthn WebDriver implementation supports the credBlob extension defined in [FIDO-CTAP].

When validating capabilities, the extension-specific substeps to validate an authenticator extension capability key with value are the following:

  1. If value is not a boolean return a WebDriver Error with WebDriver error code invalid argument.

  2. Otherwise, let deserialized be set to value.

When matching capabilities, the extension-specific steps to match an authenticator extension capability key with value are the following:

  1. If value is true and the endpoint node WebAuthn WebDriver implementation does not support the authenticator extension identified by the key, the match is unsuccessful.

  2. Otherwise, the match is successful.

User-Agents implementing defined authenticator extensions SHOULD implement the corresponding authenticator extension capability.

11.2. Virtual Authenticators

These WebDriver extension commands create and interact with Virtual Authenticators: software implementations of the Authenticator Model. Virtual Authenticators are stored in a Virtual Authenticator Database. Each stored virtual authenticator has the following properties:

authenticatorId

An non-null string made using up to 48 characters from the unreserved production defined in Appendix A of [RFC3986] that uniquely identifies the Virtual Authenticator.

protocol

The protocol the Virtual Authenticator speaks: one of "ctap1/u2f", "ctap2" or "ctap2_1" [FIDO-CTAP].

transport

The AuthenticatorTransport simulated. If the transport is set to internal, the authenticator simulates platform attachment. Otherwise, it simulates cross-platform attachment.

hasResidentKey

If set to true the authenticator will support client-side discoverable credentials.

hasUserVerification

If set to true, the authenticator supports user verification.

isUserConsenting

Determines the result of all user consent authorization gestures, and by extension, any test of user presence performed on the Virtual Authenticator. If set to true, a user consent will always be granted. If set to false, it will not be granted.

isUserVerified

Determines the result of User Verification performed on the Virtual Authenticator. If set to true, User Verification will always succeed. If set to false, it will fail.

Note: This property has no effect if hasUserVerification is set to false.

extensions

A string array containing the extension identifiers supported by the Virtual Authenticator.

A Virtual authenticator MUST support all authenticator extensions present in its extensions array. It MUST NOT support any authenticator extension not present in its extensions array.

defaultBackupEligibility

Determines the default state of the backup eligibility credential property for any newly created Public Key Credential Source. This value MUST be reflected by the BE authenticator data flag when performing an authenticatorMakeCredential operation with this virtual authenticator.

defaultBackupState

Determines the default state of the backup state credential property for any newly created Public Key Credential Source. This value MUST be reflected by the BS authenticator data flag when performing an authenticatorMakeCredential operation with this virtual authenticator.

11.3. Add Virtual Authenticator

The Add Virtual Authenticator WebDriver extension command creates a software Virtual Authenticator. It is defined as follows:

HTTP Method URI Template
POST /session/{session id}/webauthn/authenticator

The Authenticator Configuration is a JSON Object passed to the remote end steps as parameters. It contains the following key and value pairs:

Key Value Type Valid Values Default
protocol string "ctap1/u2f", "ctap2", "ctap2_1" None
transport string AuthenticatorTransport values None
hasResidentKey boolean true, false false
hasUserVerification boolean true, false false
isUserConsenting boolean true, false true
isUserVerified boolean true, false false
extensions string array An array containing extension identifiers Empty array
defaultBackupEligibility boolean true, false false
defaultBackupState boolean true, false false

The remote end steps are:

  1. If parameters is not a JSON Object, return a WebDriver error with WebDriver error code invalid argument.

    Note: parameters is an Authenticator Configuration object.

  2. Let authenticator be a new Virtual Authenticator.

  3. For each enumerable own property in parameters:

    1. Let key be the name of the property.

    2. Let value be the result of getting a property named key from parameters.

    3. If there is no matching key for key in Authenticator Configuration, return a WebDriver error with WebDriver error code invalid argument.

    4. If value is not one of the valid values for that key, return a WebDriver error with WebDriver error code invalid argument.

    5. Set a property key to value on authenticator.

  4. For each property in Authenticator Configuration with a default defined:

    1. If key is not a defined property of authenticator, set a property key to default on authenticator.

  5. For each property in Authenticator Configuration:

    1. If key is not a defined property of authenticator, return a WebDriver error with WebDriver error code invalid argument.

  6. For each extension in authenticator.extensions:

    1. If extension is not an extension identifier supported by the endpoint node WebAuthn WebDriver implementation, return a WebDriver error with WebDriver error code unsupported operation.

  7. Generate a valid unique authenticatorId.

  8. Set a property authenticatorId to authenticatorId on authenticator.

  9. Store authenticator in the Virtual Authenticator Database.

  10. Return success with data authenticatorId.

11.4. Remove Virtual Authenticator

The Remove Virtual Authenticator WebDriver extension command removes a previously created Virtual Authenticator. It is defined as follows:

HTTP Method URI Template
DELETE /session/{session id}/webauthn/authenticator/{authenticatorId}

The remote end steps are:

  1. If authenticatorId does not match any Virtual Authenticator stored in the Virtual Authenticator Database, return a WebDriver error with WebDriver error code invalid argument.

  2. Remove the Virtual Authenticator identified by authenticatorId from the Virtual Authenticator Database

  3. Return success.

11.5. Add Credential

The Add Credential WebDriver extension command injects a Public Key Credential Source into an existing Virtual Authenticator. It is defined as follows:

HTTP Method URI Template
POST /session/{session id}/webauthn/authenticator/{authenticatorId}/credential

The Credential Parameters is a JSON Object passed to the remote end steps as parameters. It contains the following key and value pairs:

Key Description Value Type
credentialId The Credential ID encoded using Base64url Encoding. string
isResidentCredential If set to true, a client-side discoverable credential is created. If set to false, a server-side credential is created instead. boolean
rpId The Relying Party ID the credential is scoped to. string
privateKey An asymmetric key package containing a single private key per [RFC5958], encoded using Base64url Encoding. string
userHandle The userHandle associated to the credential encoded using Base64url Encoding. This property may not be defined. string
signCount The initial value for a signature counter associated to the public key credential source. number
largeBlob The large, per-credential blob associated to the public key credential source, encoded using Base64url Encoding. This property may not be defined. string
backupEligibility The simulated backup eligibility for the public key credential source. If unset, the value will default to the virtual authenticator's defaultBackupEligibility property. The simulated backup eligibility MUST be reflected by the BE authenticator data flag when performing an authenticatorGetAssertion operation with this public key credential source. boolean
backupState The simulated backup state for the public key credential source. If unset, the value will default to the virtual authenticator's defaultBackupState property. The simulated backup state MUST be reflected by the BS authenticator data flag when performing an authenticatorGetAssertion operation with this public key credential source. boolean
userName The user's name associated to the credential. If unset, the value will default to the empty string. string
userDisplayName The user's displayName associated to the credential. If unset, the value will default to the empty string. string

The remote end steps are:

  1. If parameters is not a JSON Object, return a WebDriver error with WebDriver error code invalid argument.

    Note: parameters is a Credential Parameters object.

  2. Let credentialId be the result of decoding Base64url Encoding on the parameterscredentialId property.

  3. If credentialId is failure, return a WebDriver error with WebDriver error code invalid argument.

  4. Let isResidentCredential be the parametersisResidentCredential property.

  5. If isResidentCredential is not defined, return a WebDriver error with WebDriver error code invalid argument.

  6. Let rpId be the parametersrpId property.

  7. If rpId is not a valid RP ID, return a WebDriver error with WebDriver error code invalid argument.

  8. Let privateKey be the result of decoding Base64url Encoding on the parametersprivateKey property.

  9. If privateKey is failure, return a WebDriver error with WebDriver error code invalid argument.

  10. If privateKey is not a validly-encoded asymmetric key package containing a single ECDSA private key on the P-256 curve per [RFC5958], return a WebDriver error with WebDriver error code invalid argument.

  11. If the parametersuserHandle property is defined:

    1. Let userHandle be the result of decoding Base64url Encoding on the parametersuserHandle property.

    2. If userHandle is failure, return a WebDriver error with WebDriver error code invalid argument.

  12. Otherwise:

    1. If isResidentCredential is true, return a WebDriver error with WebDriver error code invalid argument.

    2. Let userHandle be null.

  13. If authenticatorId does not match any Virtual Authenticator stored in the Virtual Authenticator Database, return a WebDriver error with WebDriver error code invalid argument.

  14. Let authenticator be the Virtual Authenticator matched by authenticatorId.

  15. If isResidentCredential is true and the authenticator’s hasResidentKey property is false, return a WebDriver error with WebDriver error code invalid argument.

  16. If the authenticator supports the largeBlob extension and the parameterslargeBlob feature is defined:

    1. Let largeBlob be the result of decoding Base64url Encoding on the parameterslargeBlob property.

    2. If largeBlob is failure, return a WebDriver error with WebDriver error code invalid argument.

  17. Otherwise:

    1. Let largeBlob be null.

  18. Let backupEligibility be the parametersbackupEligibility property.

  19. If backupEligibility is not defined, set backupEligibility to the value of the authenticator’s defaultBackupEligibility.

  20. Let backupState be the parametersbackupState property.

  21. If backupState is not defined, set backupState to the value of the authenticator’s defaultBackupState.

  22. Let userName be the parametersuserName property.

  23. If userName is not defined, set userName to the empty string.

  24. Let userDisplayName be the parametersuserDisplayName property.

  25. If userDisplayName is not defined, set userDisplayName to the empty string.

  26. Let credential be a new Client-side discoverable Public Key Credential Source if isResidentCredential is true or a Server-side Public Key Credential Source otherwise whose items are:

    type

    public-key

    id

    credentialId

    privateKey

    privateKey

    rpId

    rpId

    userHandle

    userHandle

    otherUI

    Construct from userName and userDisplayName.

  27. Set the credential’s backup eligibility credential property to backupEligibility.

  28. Set the credential’s backup state credential property to backupState.

  29. Associate a signature counter counter to the credential with a starting value equal to the parameterssignCount or 0 if signCount is null.

  30. If largeBlob is not null, set the large, per-credential blob associated to the credential to largeBlob.

  31. Store the credential and counter in the database of the authenticator.

  32. Return success.

11.6. Get Credentials

The Get Credentials WebDriver extension command returns one Credential Parameters object for every Public Key Credential Source stored in a Virtual Authenticator, regardless of whether they were stored using Add Credential or navigator.credentials.create(). It is defined as follows:

HTTP Method URI Template
GET /session/{session id}/webauthn/authenticator/{authenticatorId}/credentials

The remote end steps are:

  1. If authenticatorId does not match any Virtual Authenticator stored in the Virtual Authenticator Database, return a WebDriver error with WebDriver error code invalid argument.

  2. Let credentialsArray be an empty array.

  3. For each Public Key Credential Source credential, managed by the authenticator identified by authenticatorId, construct a corresponding Credential Parameters Object and add it to credentialsArray.

  4. Return success with data containing credentialsArray.

11.7. Remove Credential

The Remove Credential WebDriver extension command removes a Public Key Credential Source stored on a Virtual Authenticator. It is defined as follows:

HTTP Method URI Template
DELETE /session/{session id}/webauthn/authenticator/{authenticatorId}/credentials/{credentialId}

The remote end steps are:

  1. If authenticatorId does not match any Virtual Authenticator stored in the Virtual Authenticator Database, return a WebDriver error with WebDriver error code invalid argument.

  2. Let authenticator be the Virtual Authenticator identified by authenticatorId.

  3. If credentialId does not match any Public Key Credential Source managed by authenticator, return a WebDriver error with WebDriver error code invalid argument.

  4. Remove the Public Key Credential Source identified by credentialId managed by authenticator.

  5. Return success.

11.8. Remove All Credentials

The Remove All Credentials WebDriver extension command removes all Public Key Credential Sources stored on a Virtual Authenticator. It is defined as follows:

HTTP Method URI Template
DELETE /session/{session id}/webauthn/authenticator/{authenticatorId}/credentials

The remote end steps are:

  1. If authenticatorId does not match any Virtual Authenticator stored in the Virtual Authenticator Database, return a WebDriver error with WebDriver error code invalid argument.

  2. Remove all Public Key Credential Sources managed by the Virtual Authenticator identified by authenticatorId.

  3. Return success.

11.9. Set User Verified

The Set User Verified extension command sets the isUserVerified property on the Virtual Authenticator. It is defined as follows:

HTTP Method URI Template
POST /session/{session id}/webauthn/authenticator/{authenticatorId}/uv

The remote end steps are:

  1. If parameters is not a JSON Object, return a WebDriver error with WebDriver error code invalid argument.

  2. If authenticatorId does not match any Virtual Authenticator stored in the Virtual Authenticator Database, return a WebDriver error with WebDriver error code invalid argument.

  3. If isUserVerified is not a defined property of parameters, return a WebDriver error with WebDriver error code invalid argument.

  4. Let authenticator be the Virtual Authenticator identified by authenticatorId.

  5. Set the authenticator’s isUserVerified property to the parametersisUserVerified property.

  6. Return success.

11.10. Set Credential Properties

The Set Credential Properties extension command allows setting the backupEligibility and backupState credential properties of a Virtual Authenticator's public key credential source. It is defined as follows:

HTTP Method URI Template
POST /session/{session id}/webauthn/authenticator/{authenticatorId}/credentials/{credentialId}/props

The Set Credential Properties Parameters is a JSON Object passed to the remote end steps as parameters. It contains the following key and value pairs:

Key Description Value Type
backupEligibility The backup eligibility credential property. boolean
backupState The backup state credential property. boolean

The remote end steps are:

  1. If parameters is not a JSON Object, return a WebDriver error with WebDriver error code invalid argument.

    Note: parameters is a Set Credential Properties Parameters object.

  2. If authenticatorId does not match any Virtual Authenticator stored in the Virtual Authenticator Database, return a WebDriver error with WebDriver error code invalid argument.

  3. Let credential be the public key credential source managed by authenticator matched by credentialId.

  4. If credential is empty, return a WebDriver error with WebDriver error code invalid argument.

  5. Let backupEligibility be the parametersbackupEligibility property.

  6. If backupEligibility is defined, set the backup eligibility credential property of credential to the value of backupEligibility.

    Note: Normally, the backupEligibility property is permanent to a public key credential source. Set Credential Properties allows changing it for testing and debugging purposes.

  7. Let backupState be the parametersbackupState property.

  8. If backupState is defined, set the backup state credential property of credential to the value of backupState.

  9. Return success.

12. IANA Considerations

12.1. WebAuthn Attestation Statement Format Identifier Registrations Updates

This section updates the below-listed attestation statement formats defined in Section § 8 Defined Attestation Statement Formats in the IANA "WebAuthn Attestation Statement Format Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809], originally registered in [WebAuthn-1], to point to this specification.

12.2. WebAuthn Attestation Statement Format Identifier Registrations

This section registers the below-listed attestation statement formats, newly defined in Section § 8 Defined Attestation Statement Formats, in the IANA "WebAuthn Attestation Statement Format Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809].

12.3. WebAuthn Extension Identifier Registrations Updates

This section updates the below-listed extension identifier values defined in Section § 10 Defined Extensions in the IANA "WebAuthn Extension Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809], originally registered in [WebAuthn-1], to point to this specification.

12.4. WebAuthn Extension Identifier Registrations

This section registers the below-listed extension identifier values, newly defined in Section § 10 Defined Extensions, in the IANA "WebAuthn Extension Identifiers" registry [IANA-WebAuthn-Registries] established by [RFC8809].

13. Security Considerations

This specification defines a Web API and a cryptographic peer-entity authentication protocol. The Web Authentication API allows Web developers (i.e., "authors") to utilize the Web Authentication protocol in their registration and authentication ceremonies. The entities comprising the Web Authentication protocol endpoints are user-controlled WebAuthn Authenticators and a WebAuthn Relying Party's computing environment hosting the Relying Party's web application. In this model, the user agent, together with the WebAuthn Client, comprise an intermediary between authenticators and Relying Parties. Additionally, authenticators can attest to Relying Parties as to their provenance.

At this time, this specification does not feature detailed security considerations. However, the [FIDOSecRef] document provides a security analysis which is overall applicable to this specification. Also, the [FIDOAuthnrSecReqs] document suite provides useful information about authenticator security characteristics.

The below subsections comprise the current Web Authentication-specific security considerations. They are divided by audience; general security considerations are direct subsections of this section, while security considerations specifically for authenticator, client and Relying Party implementers are grouped into respective subsections.

13.1. Credential ID Unsigned

The credential ID accompanying an authentication assertion is not signed. This is not a problem because all that would happen if an authenticator returns the wrong credential ID, or if an attacker intercepts and manipulates the credential ID, is that the WebAuthn Relying Party would not look up the correct credential public key with which to verify the returned signed authenticator data (a.k.a., assertion), and thus the interaction would end in an error.

13.2. Physical Proximity between Client and Authenticator

In the WebAuthn authenticator model, it is generally assumed that roaming authenticators are physically close to, and communicate directly with, the client. This arrangement has some important advantages.

The promise of physical proximity between client and authenticator is a key strength of a something you have authentication factor. For example, if a roaming authenticator can communicate only via USB or Bluetooth, the limited range of these transports ensures that any malicious actor must physically be within that range in order to interact with the authenticator. This is not necessarily true of an authenticator that can be invoked remotely — even if the authenticator verifies user presence, users can be tricked into authorizing remotely initiated malicious requests.

Direct communication between client and authenticator means the client can enforce the scope restrictions for credentials. By contrast, if the communication between client and authenticator is mediated by some third party, then the client has to trust the third party to enforce the scope restrictions and control access to the authenticator. Failure to do either could result in a malicious Relying Party receiving authentication assertions valid for other Relying Parties, or in a malicious user gaining access to authentication assertions for other users.

If designing a solution where the authenticator does not need to be physically close to the client, or where client and authenticator do not communicate directly, designers SHOULD consider how this affects the enforcement of scope restrictions and the strength of the authenticator as a something you have authentication factor.

13.3. Security considerations for authenticators

13.3.1. Attestation Certificate Hierarchy

A 3-tier hierarchy for attestation certificates is RECOMMENDED (i.e., Attestation Root, Attestation Issuing CA, Attestation Certificate). It is also RECOMMENDED that for each WebAuthn Authenticator device line (i.e., model), a separate issuing CA is used to help facilitate isolating problems with a specific version of an authenticator model.

If the attestation root certificate is not dedicated to a single WebAuthn Authenticator device line (i.e., AAGUID), the AAGUID SHOULD be specified in the attestation certificate itself, so that it can be verified against the authenticator data.

13.3.2. Attestation Certificate and Attestation Certificate CA Compromise

When an intermediate CA or a root CA used for issuing attestation certificates is compromised, WebAuthn Authenticator attestation key pairs are still safe although their certificates can no longer be trusted. A WebAuthn Authenticator manufacturer that has recorded the attestation public keys for their authenticator models can issue new attestation certificates for these keys from a new intermediate CA or from a new root CA. If the root CA changes, the WebAuthn Relying Parties MUST update their trusted root certificates accordingly.

A WebAuthn Authenticator attestation certificate MUST be revoked by the issuing CA if its private key has been compromised. A WebAuthn Authenticator manufacturer may need to ship a firmware update and inject new attestation private keys and certificates into already manufactured WebAuthn Authenticators, if the exposure was due to a firmware flaw. (The process by which this happens is out of scope for this specification.) If the WebAuthn Authenticator manufacturer does not have this capability, then it may not be possible for Relying Parties to trust any further attestation statements from the affected WebAuthn Authenticators.

See also the related security consideration for Relying Parties in § 13.4.5 Revoked Attestation Certificates.

13.4. Security considerations for Relying Parties

13.4.1. Security Benefits for WebAuthn Relying Parties

The main benefits offered to WebAuthn Relying Parties by this specification include:

  1. Users and accounts can be secured using widely compatible, easy-to-use multi-factor authentication.

  2. The Relying Party does not need to provision authenticator hardware to its users. Instead, each user can independently obtain any conforming authenticator and use that same authenticator with any number of Relying Parties. The Relying Party can optionally enforce requirements on authenticators' security properties by inspecting the attestation statements returned from the authenticators.

  3. Authentication ceremonies are resistant to man-in-the-middle attacks. Regarding registration ceremonies, see § 13.4.4 Attestation Limitations, below.

  4. The Relying Party can automatically support multiple types of user verification - for example PIN, biometrics and/or future methods - with little or no code change, and can let each user decide which they prefer to use via their choice of authenticator.

  5. The Relying Party does not need to store additional secrets in order to gain the above benefits.

As stated in the Conformance section, the Relying Party MUST behave as described in § 7 WebAuthn Relying Party Operations to obtain all of the above security benefits. However, one notable use case that departs slightly from this is described below in § 13.4.4 Attestation Limitations.

13.4.2. Visibility Considerations for Embedded Usage

Simplistic use of WebAuthn in an embedded context, e.g., within iframes as described in § 5.10 Using Web Authentication within iframe elements, may make users vulnerable to UI Redressing attacks, also known as "Clickjacking". This is where an attacker overlays their own UI on top of a Relying Party's intended UI and attempts to trick the user into performing unintended actions with the Relying Party. For example, using these techniques, an attacker might be able to trick users into purchasing items, transferring money, etc.

Even though WebAuthn-specific UI is typically handled by the client platform and thus is not vulnerable to UI Redressing, it is likely important for an Relying Party having embedded WebAuthn-wielding content to ensure that their content’s UI is visible to the user. An emerging means to do so is by observing the status of the experimental Intersection Observer v2's isVisible attribute. For example, the Relying Party's script running in the embedded context could pre-emptively load itself in a popup window if it detects isVisble being set to false, thus side-stepping any occlusion of their content.

13.4.3. Cryptographic Challenges

As a cryptographic protocol, Web Authentication is dependent upon randomized challenges to avoid replay attacks. Therefore, the values of both PublicKeyCredentialCreationOptions.challenge and PublicKeyCredentialRequestOptions.challenge MUST be randomly generated by Relying Parties in an environment they trust (e.g., on the server-side), and the returned challenge value in the client’s response MUST match what was generated. This SHOULD be done in a fashion that does not rely upon a client’s behavior, e.g., the Relying Party SHOULD store the challenge temporarily until the operation is complete. Tolerating a mismatch will compromise the security of the protocol.

Challenges SHOULD be valid for a duration similar to the upper limit of the recommended range and default for a WebAuthn ceremony timeout.

In order to prevent replay attacks, the challenges MUST contain enough entropy to make guessing them infeasible. Challenges SHOULD therefore be at least 16 bytes long.

13.4.4. Attestation Limitations

This section is not normative.

When registering a new credential, the attestation statement, if present, may allow the WebAuthn Relying Party to derive assurances about various authenticator qualities. For example, the authenticator model, or how it stores and protects credential private keys. However, it is important to note that an attestation statement, on its own, provides no means for a Relying Party to verify that an attestation object was generated by the authenticator the user intended, and not by a man-in-the-middle attacker. For example, such an attacker could use malicious code injected into Relying Party script. The Relying Party must therefore rely on other means, e.g., TLS and related technologies, to protect the attestation object from man-in-the-middle attacks.

Under the assumption that a registration ceremony is completed securely, and that the authenticator maintains confidentiality of the credential private key, subsequent authentication ceremonies using that public key credential are resistant to tampering by man-in-the-middle attacks.

The discussion above holds for all attestation types. In all cases it is possible for a man-in-the-middle attacker to replace the PublicKeyCredential object, including the attestation statement and the credential public key to be registered, and subsequently tamper with future authentication assertions scoped for the same Relying Party and passing through the same attacker.

Such an attack would potentially be detectable; since the Relying Party has registered the attacker’s credential public key rather than the user’s, the attacker must tamper with all subsequent authentication ceremonies with that Relying Party: unscathed ceremonies will fail, potentially revealing the attack.

Attestation types other than Self Attestation and None can increase the difficulty of such attacks, since Relying Parties can possibly display authenticator information, e.g., model designation, to the user. An attacker might therefore need to use a genuine authenticator of the same model as the user’s authenticator, or the user might notice that the Relying Party reports a different authenticator model than the user expects.

Note: All variants of man-in-the-middle attacks described above are more difficult for an attacker to mount than a man-in-the-middle attack against conventional password authentication.

13.4.5. Revoked Attestation Certificates

If attestation certificate validation fails due to a revoked intermediate attestation CA certificate, and the Relying Party's policy requires rejecting the registration/authentication request in these situations, then it is RECOMMENDED that the Relying Party also un-registers (or marks with a trust level equivalent to "self attestation") public key credentials that were registered after the CA compromise date using an attestation certificate chaining up to the same intermediate CA. It is thus RECOMMENDED that Relying Parties remember intermediate attestation CA certificates during registration in order to un-register related public key credentials if the registration was performed after revocation of such certificates.

See also the related security consideration for authenticators in § 13.3.2 Attestation Certificate and Attestation Certificate CA Compromise.

13.4.6. Credential Loss and Key Mobility

This specification defines no protocol for backing up credential private keys, or for sharing them between authenticators. In general, it is expected that a credential private key never leaves the authenticator that created it. Losing an authenticator therefore, in general, means losing all credentials bound to the lost authenticator, which could lock the user out of an account if the user has only one credential registered with the Relying Party. Instead of backing up or sharing private keys, the Web Authentication API allows registering multiple credentials for the same user. For example, a user might register platform credentials on frequently used client devices, and one or more roaming credentials for use as backup and with new or rarely used client devices.

Relying Parties SHOULD allow and encourage users to register multiple credentials to the same user account. Relying Parties SHOULD make use of the excludeCredentials and user.id options to ensure that these different credentials are bound to different authenticators.

13.4.7. Unprotected account detection

This section is not normative.

This security consideration applies to Relying Parties that support authentication ceremonies with a non-empty allowCredentials argument as the first authentication step. For example, if using authentication with server-side credentials as the first authentication step.

In this case the allowCredentials argument risks leaking information about which user accounts have WebAuthn credentials registered and which do not, which may be a signal of account protection strength. For example, say an attacker can initiate an authentication ceremony by providing only a username, and the Relying Party responds with a non-empty allowCredentials for some user accounts, and with failure or a password challenge for other user accounts. The attacker can then conclude that the latter user accounts likely do not require a WebAuthn assertion for successful authentication, and thus focus an attack on those likely weaker accounts.

This issue is similar to the one described in § 14.6.2 Username Enumeration and § 14.6.3 Privacy leak via credential IDs, and can be mitigated in similar ways.

13.4.8. Code injection attacks

Any malicious code executing on an origin within the scope of a Relying Party's public key credentials has the potential to invalidate any and all security guarantees WebAuthn may provide. WebAuthn Clients only expose the WebAuthn API in secure contexts, which mitigates the most basic attacks but SHOULD be combined with additional precautions by Relying Parties.

Code injection can happen in several ways; this section attempts to point out some likely scenarios and suggest suitable mitigations, but is not an exhaustive list.

13.4.9. Validating the origin of a credential

When registering a credential and when verifying an assertion, the Relying Party MUST validate the origin member of the client data.

The Relying Party MUST NOT accept unexpected values of origin, as doing so could allow a malicious website to obtain valid credentials. Although the scope of WebAuthn credentials prevents their use on domains outside the RP ID they were registered for, the Relying Party's origin validation serves as an additional layer of protection in case a faulty authenticator fails to enforce credential scope. See also § 13.4.8 Code injection attacks for discussion of potentially malicious subdomains.

Validation MAY be performed by exact string matching or any other method as needed by the Relying Party. For example:

Similar considerations apply when validating the topOrigin member of the client data. When topOrigin is present, the Relying Party MUST validate that its value is expected. This validation MAY be performed by exact string matching or any other method as needed by the Relying Party. For example:

14. Privacy Considerations

The privacy principles in [FIDO-Privacy-Principles] also apply to this specification.

This section is divided by audience; general privacy considerations are direct subsections of this section, while privacy considerations specifically for authenticator, client and Relying Party implementers are grouped into respective subsections.

14.1. De-anonymization Prevention Measures

This section is not normative.

Many aspects of the design of the Web Authentication API are motivated by privacy concerns. The main concern considered in this specification is the protection of the user’s personal identity, i.e., the identification of a human being or a correlation of separate identities as belonging to the same human being. Although the Web Authentication API does not use or provide any form of global identity, the following kinds of potentially correlatable identifiers are used:

Some of the above information is necessarily shared with the Relying Party. The following sections describe the measures taken to prevent malicious Relying Parties from using it to discover a user’s personal identity.

14.2. Anonymous, Scoped, Non-correlatable Public Key Credentials

This section is not normative.

Although Credential IDs and credential public keys are necessarily shared with the WebAuthn Relying Party to enable strong authentication, they are designed to be minimally identifying and not shared between Relying Parties.

Additionally, a client-side discoverable public key credential source can optionally include a user handle specified by the Relying Party. The credential can then be used to both identify and authenticate the user. This means that a privacy-conscious Relying Party can allow creation of a user account without a traditional username, further improving non-correlatability between Relying Parties.

14.3. Authenticator-local Biometric Recognition

Biometric authenticators perform the biometric recognition internally in the authenticator - though for platform authenticators the biometric data might also be visible to the client, depending on the implementation. Biometric data is not revealed to the WebAuthn Relying Party; it is used only locally to perform user verification authorizing the creation and registration of, or authentication using, a public key credential. A malicious Relying Party therefore cannot discover the user’s personal identity via biometric data, and a security breach at a Relying Party cannot expose biometric data for an attacker to use for forging logins at other Relying Parties.

In the case where a Relying Party requires biometric recognition, this is performed locally by the biometric authenticator perfoming user verification and then signaling the result by setting the UV flag in the signed assertion response, instead of revealing the biometric data itself to the Relying Party.

14.4. Privacy considerations for authenticators

14.4.1. Attestation Privacy

Attestation certificates and attestation key pairs can be used to track users or link various online identities of the same user together. This can be mitigated in several ways, including:

14.4.2. Privacy of personally identifying information Stored in Authenticators

Authenticators MAY provide additional information to clients outside what’s defined by this specification, e.g., to enable the client to provide a rich UI with which the user can pick which credential to use for an authentication ceremony. If an authenticator chooses to do so, it SHOULD NOT expose personally identifying information unless successful user verification has been performed. If the authenticator supports user verification with more than one concurrently enrolled user, the authenticator SHOULD NOT expose personally identifying information of users other than the currently verified user. Consequently, an authenticator that is not capable of user verification SHOULD NOT store personally identifying information.

For the purposes of this discussion, the user handle conveyed as the id member of PublicKeyCredentialUserEntity is not considered personally identifying information; see § 14.6.1 User Handle Contents.

These recommendations serve to prevent an adversary with physical access to an authenticator from extracting personally identifying information about the authenticator's enrolled user(s).

14.5. Privacy considerations for clients

14.5.1. Registration Ceremony Privacy

In order to protect users from being identified without consent, implementations of the [[Create]](origin, options, sameOriginWithAncestors) method need to take care to not leak information that could enable a malicious WebAuthn Relying Party to distinguish between these cases, where "excluded" means that at least one of the credentials listed by the Relying Party in excludeCredentials is bound to the authenticator:

If the above cases are distinguishable, information is leaked by which a malicious Relying Party could identify the user by probing for which credentials are available. For example, one such information leak is if the client returns a failure response as soon as an excluded authenticator becomes available. In this case - especially if the excluded authenticator is a platform authenticator - the Relying Party could detect that the ceremony was canceled before the user could feasibly have canceled it manually, and thus conclude that at least one of the credentials listed in the excludeCredentials parameter is available to the user.

The above is not a concern, however, if the user has consented to create a new credential before a distinguishable error is returned, because in this case the user has confirmed intent to share the information that would be leaked.

14.5.2. Authentication Ceremony Privacy

In order to protect users from being identified without consent, implementations of the [[DiscoverFromExternalSource]](origin, options, sameOriginWithAncestors) method need to take care to not leak information that could enable a malicious WebAuthn Relying Party to distinguish between these cases, where "named" means that the credential is listed by the Relying Party in allowCredentials:

If the above cases are distinguishable, information is leaked by which a malicious Relying Party could identify the user by probing for which credentials are available. For example, one such information leak may happen if the client displays instructions and controls for canceling or proceeding with the authentication ceremony only after discovering an authenticator that contains a named credential. In this case, if the Relying Party is aware of this client behavior, the Relying Party could detect that the ceremony was canceled by the user and not the timeout, and thus conclude that at least one of the credentials listed in the allowCredentials parameter is available to the user.

This concern may be addressed by displaying controls allowing the user to cancel an authentication ceremony at any time, regardless of whether any named credentials are available.

14.5.3. Privacy Between Operating System Accounts

If a platform authenticator is included in a client device with a multi-user operating system, the platform authenticator and client device SHOULD work together to ensure that the existence of any platform credential is revealed only to the operating system user that created that platform credential.

14.5.4. Disclosing Client Capabilities

The getClientCapabilities method assists WebAuthn Relying Parties in crafting registration and authentication experiences which have a high chance of success with the client and/or user.

The client’s support or lack of support of a WebAuthn capability may pose a fingerprinting risk. Client implementations MAY wish to limit capability disclosures based on client policy and/or user consent.

14.6. Privacy considerations for Relying Parties

14.6.1. User Handle Contents

Since the user handle is not considered personally identifying information in § 14.4.2 Privacy of personally identifying information Stored in Authenticators, and since authenticators MAY reveal user handles without first performing user verification, the Relying Party MUST NOT include personally identifying information, e.g., e-mail addresses or usernames, in the user handle. This includes hash values of personally identifying information, unless the hash function is salted with salt values private to the Relying Party, since hashing does not prevent probing for guessable input values. It is RECOMMENDED to let the user handle be 64 random bytes, and store this value in the user account.

14.6.2. Username Enumeration

While initiating a registration or authentication ceremony, there is a risk that the WebAuthn Relying Party might leak sensitive information about its registered users. For example, if a Relying Party uses e-mail addresses as usernames and an attacker attempts to initiate an authentication ceremony for "alex.mueller@example.com" and the Relying Party responds with a failure, but then successfully initiates an authentication ceremony for "j.doe@example.com", then the attacker can conclude that "j.doe@example.com" is registered and "alex.mueller@example.com" is not. The Relying Party has thus leaked the possibly sensitive information that "j.doe@example.com" has a user account at this Relying Party.

The following is a non-normative, non-exhaustive list of measures the Relying Party may implement to mitigate or prevent information leakage due to such an attack:

14.6.3. Privacy leak via credential IDs

This section is not normative.

This privacy consideration applies to Relying Parties that support authentication ceremonies with a non-empty allowCredentials argument as the first authentication step. For example, if using authentication with server-side credentials as the first authentication step.

In this case the allowCredentials argument risks leaking personally identifying information, since it exposes the user’s credential IDs to an unauthenticated caller. Credential IDs are designed to not be correlatable between Relying Parties, but the length of a credential ID might be a hint as to what type of authenticator created it. It is likely that a user will use the same username and set of authenticators for several Relying Parties, so the number of credential IDs in allowCredentials and their lengths might serve as a global correlation handle to de-anonymize the user. Knowing a user’s credential IDs also makes it possible to confirm guesses about the user’s identity given only momentary physical access to one of the user’s authenticators.

In order to prevent such information leakage, the Relying Party could for example:

If the above prevention measures are not available, i.e., if allowCredentials needs to be exposed given only a username, the Relying Party could mitigate the privacy leak using the same approach of returning imaginary credential IDs as discussed in § 14.6.2 Username Enumeration.

When signalling that a credential id was not recognized, the WebAuthn Relying Party SHOULD use the signalUnknownCredential(options) method instead of the signalAllAcceptedCredentials(options) method to avoid exposing credential IDs to an unauthenticated caller.

15. Accessibility Considerations

User verification-capable authenticators, whether roaming or platform, should offer users more than one user verification method. For example, both fingerprint sensing and PIN entry. This allows for fallback to other user verification means if the selected one is not working for some reason. Note that in the case of roaming authenticators, the authenticator and platform might work together to provide a user verification method such as PIN entry [FIDO-CTAP].

Relying Parties, at registration time, SHOULD provide affordances for users to complete future authorization gestures correctly. This could involve naming the authenticator, choosing a picture to associate with the device, or entering freeform text instructions (e.g., as a reminder-to-self).

Ceremonies relying on timing, e.g., a registration ceremony (see timeout) or an authentication ceremony (see timeout), ought to follow [WCAG21]'s Guideline 2.2 Enough Time. If a client platform determines that a Relying Party-supplied timeout does not appropriately adhere to the latter [WCAG21] guidelines, then the client platform MAY adjust the timeout accordingly.

The recommended range and default for a WebAuthn ceremony timeout is as follows:

16. Test Vectors

This section is not normative.

This section lists example values that may be used to validate implementations.

Examples are given as pseudocode in pairs of registration and authentication ceremonies done with the same credential, with byte string literals and comments in CDDL [RFC8610] notation. The examples are not exhaustive and do not include WebAuthn extensions.

The examples are structured as a flow from inputs to outputs, including some intermediate values. In registration examples the Relying Party defines the challenge input, the client generates the clientDataJSON output and the authenticator generates the attestationObject output. In authentication examples the Relying Party defines the challenge input, the client generates the clientDataJSON output and the authenticator generates the authenticatorData and signature outputs. Other cryptographically unrelated inputs and outputs are not included.

Authenticator implementers may check that they produce similarly structured attestationObject, authenticatorData and signature outputs. Client implementers may check that they produce similarly structured clientDataJSON outputs. Relying Party implementers may check that they can successfully validate the registration outputs given the same challenge input, and that they can successfully validate the authentication outputs given the same challenge input and the credential public key and credential ID from the associated registration example.

All examples use the RP ID example.org, the origin https://example.org and, where applicable, the topOrigin https://example.com. Examples include no attestation when not noted otherwise.

All random values are deterministically generated using HKDF-SHA-256 [RFC5869] from the base input key material denoted in CDDL as 'WebAuthn test vectors', or equivalently as h’576562417574686e207465737420766563746f7273'. ECDSA signatures use a deterministic nonce [RFC6979]. The RSA key in the examples is constructed from the two smallest Mersenne primes 2p - 1 such that p ≥ 1024.

Note that:

Note: Authenticators implementing CTAP2 [FIDO-CTAP] return attestation objects using different keys than those defined in this specification. These examples reflect the attestation object format expected by WebAuthn Relying Parties, so attestation objects emitted from CTAP2 need their keys translated in order to be bitwise identical to these examples.

16.1. Attestation trust root certificate

All examples that include attestation use the attestation trust root certificate given as attestation_ca_cert below, encoded in X.509 DER [RFC5280]:

attestation_ca_key = h'7809337f05740a96a78eedf9e9280499dcc8f2aa129616049ec1dccfe103eb2a'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='Attestation CA', L=32)
attestation_ca_serial_number = h'ed7f905d8bd0b414d1784913170a90b6'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='Attestation CA', L=16)
attestation_ca_cert = h'30820207308201ada003020102021100ed7f905d8bd0b414d1784913170a90b6300a06082a8648ce3d0403023062311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331253023060355040b0c1c41757468656e74696361746f72204174746573746174696f6e204341310b30090603550406130241413020170d3234303130313030303030305a180f33303234303130313030303030305a3062311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331253023060355040b0c1c41757468656e74696361746f72204174746573746174696f6e204341310b30090603550406130241413059301306072a8648ce3d020106082a8648ce3d030107034200043269300e5ff7b699015f70cf80a8763bf705bc2e2af0c1b39cff718b7c35880ca30f319078d91b03389a006fdfc8a1dcd84edfa07d30aa13474a248a0dab5baaa3423040300f0603551d130101ff040530030101ff300e0603551d0f0101ff040403020106301d0603551d0e0416041445aff715b0dd786741fee996ebc16547a3931b1e300a06082a8648ce3d04030203480030450220483063b6bb08dcc83da33a02c11d2f42203176893554d138c614a36908724cc8022100f5ef2c912d4500b3e2f5b591d0622491e9f220dfd1f9734ec484bb7e90887663'

16.1.1. ES256 Credential with No Attestation

Registration:

challenge = h'00c30fb78531c464d2b6771dab8d7b603c01162f2fa486bea70f283ae556e130'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='none.ES256', L=32)

credential_private_key = h'6e68e7a58484a3264f66b77f5d6dc5bc36a47085b615c9727ab334e8c369c2ee'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='none.ES256', L=32)
client_data_gen_flags = h'f9'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'02', info='none.ES256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
extra_client_data = h'06441e0e375c4c1ad70620302532c4e5'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'03', info='none.ES256', L=16)
aaguid = h'8446ccb9ab1db374750b2367ff6f3a1f'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'04', info='none.ES256', L=16)
credential_id = h'f91f391db4c9b2fde0ea70189cba3fb63f579ba6122b33ad94ff3ec330084be4'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'05', info='none.ES256', L=32)
; auth_data_UV_BE_BS determines the UV, BE and BS bits of the authenticator data flags, but BS is set only if BE is
auth_data_UV_BE_BS = h'ba'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'06', info='none.ES256', L=1)

clientDataJSON = h'7b2274797065223a22776562617574686e2e637265617465222c226368616c6c656e6765223a22414d4d507434557878475453746e63647134313759447742466938767049612d7077386f4f755657345441222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73652c22657874726144617461223a22636c69656e74446174614a534f4e206d617920626520657874656e6465642077697468206164646974696f6e616c206669656c647320696e20746865206675747572652c207375636820617320746869733a20426b5165446a646354427258426941774a544c4535513d3d227d'
attestationObject = h'a363666d74646e6f6e656761747453746d74a068617574684461746158a4bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b559000000008446ccb9ab1db374750b2367ff6f3a1f0020f91f391db4c9b2fde0ea70189cba3fb63f579ba6122b33ad94ff3ec330084be4a5010203262001215820afefa16f97ca9b2d23eb86ccb64098d20db90856062eb249c33a9b672f26df61225820930a56b87a2fca66334b03458abf879717c12cc68ed73290af2e2664796b9220'

Authentication:

challenge = h'39c0e7521417ba54d43e8dc95174f423dee9bf3cd804ff6d65c857c9abf4d408'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'07', info='none.ES256', L=32)

client_data_gen_flags = h'4a'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'08', info='none.ES256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
; auth_data_UV_BS sets the UV and BS bits of the authenticator data flags, but BS is set only if BE was set in the registration
auth_data_UV_BS = h'38'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'09', info='none.ES256', L=1)

authenticatorData = h'bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b51900000000'
clientDataJSON = h'7b2274797065223a22776562617574686e2e676574222c226368616c6c656e6765223a224f63446e55685158756c5455506f334a5558543049393770767a7a59425039745a63685879617630314167222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73657d'
signature = h'3046022100f50a4e2e4409249c4a853ba361282f09841df4dd4547a13a87780218deffcd380221008480ac0f0b93538174f575bf11a1dd5d78c6e486013f937295ea13653e331e87'

16.1.2. ES256 Credential with Self Attestation

Registration:

challenge = h'7869c2b772d4b58eba9378cf8f29e26cf935aa77df0da89fa99c0bdc0a76f7e5'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='packed-self.ES256', L=32)

credential_private_key = h'b4bbfa5d68e1693b6ef5a19a0e60ef7ee2cbcac81f7fec7006ac3a21e0c5116a'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='packed-self.ES256', L=32)
client_data_gen_flags = h'db'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'02', info='packed-self.ES256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
extra_client_data = h'53d8535ef284d944643276ffd3160756'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'03', info='packed-self.ES256', L=16)
aaguid = h'df850e09db6afbdfab51697791506cfc'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'04', info='packed-self.ES256', L=16)
credential_id = h'455ef34e2043a87db3d4afeb39bbcb6cc32df9347c789a865ecdca129cbef58c'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'05', info='packed-self.ES256', L=32)
; auth_data_UV_BE_BS determines the UV, BE and BS bits of the authenticator data flags, but BS is set only if BE is
auth_data_UV_BE_BS = h'fd'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'06', info='packed-self.ES256', L=1)

clientDataJSON = h'7b2274797065223a22776562617574686e2e637265617465222c226368616c6c656e6765223a2265476e4374334c55745936366b336a506a796e6962506b31716e666644616966715a774c33417032392d55222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73652c22657874726144617461223a22636c69656e74446174614a534f4e206d617920626520657874656e6465642077697468206164646974696f6e616c206669656c647320696e20746865206675747572652c207375636820617320746869733a205539685458764b453255526b4d6e625f3078594856673d3d227d'
attestationObject = h'a363666d74667061636b65646761747453746d74a263616c67266373696758483046022100ae045923ded832b844cae4d5fc864277c0dc114ad713e271af0f0d371bd3ac540221009077a088ed51a673951ad3ba2673d5029bab65b64f4ea67b234321f86fcfac5d68617574684461746158a4bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b55d00000000df850e09db6afbdfab51697791506cfc0020455ef34e2043a87db3d4afeb39bbcb6cc32df9347c789a865ecdca129cbef58ca5010203262001215820eb151c8176b225cc651559fecf07af450fd85802046656b34c18f6cf193843c5225820927b8aa427a2be1b8834d233a2d34f61f13bfd44119c325d5896e183fee484f2'

Authentication:

challenge = h'4478a10b1352348dd160c1353b0d469b5db19eb91c27f7dfa6fed39fe26af20b'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'07', info='packed-self.ES256', L=32)

client_data_gen_flags = h'1f'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'08', info='packed-self.ES256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
extra_client_data = h'8136f9debcfa121496a265c6ce2982d5'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'09', info='packed-self.ES256', L=16)
; auth_data_UV_BS sets the UV and BS bits of the authenticator data flags, but BS is set only if BE was set in the registration
auth_data_UV_BS = h'a1'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'0a', info='packed-self.ES256', L=1)

authenticatorData = h'bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b50900000000'
clientDataJSON = h'7b2274797065223a22776562617574686e2e676574222c226368616c6c656e6765223a225248696843784e534e493352594d45314f7731476d3132786e726b634a5f6666707637546e2d4a71386773222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73652c22657874726144617461223a22636c69656e74446174614a534f4e206d617920626520657874656e6465642077697468206164646974696f6e616c206669656c647320696e20746865206675747572652c207375636820617320746869733a206754623533727a36456853576f6d58477a696d4331513d3d227d'
signature = h'3044022076691be76a8618976d9803c4cdc9b97d34a7af37e3bdc894a2bf54f040ffae850220448033a015296ffb09a762efd0d719a55346941e17e91ebf64c60d439d0b9744'

16.1.3. ES256 Credential with "crossOrigin": true in clientDataJSON

Registration:

challenge = h'3be5aacd03537142472340ab5969f240f1d87716e20b6807ac230655fa4b3b49'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='none.ES256.crossOrigin', L=32)

credential_private_key = h'96c940e769bd9f1237c119f144fa61a4d56af0b3289685ae2bef7fb89620623d'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='none.ES256.crossOrigin', L=32)
client_data_gen_flags = h'71'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'02', info='none.ES256.crossOrigin', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
extra_client_data = h'cd9aae12d0d1f435aaa56e6d0564c5ba'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'03', info='none.ES256.crossOrigin', L=16)
aaguid = h'883f4f6014f19c09d87aa38123be48d0'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'04', info='none.ES256.crossOrigin', L=16)
credential_id = h'6e1050c0d2ca2f07c755cb2c66a74c64fa43065c18f938354d9915db2bd5ce57'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'05', info='none.ES256.crossOrigin', L=32)
; auth_data_UV_BE_BS determines the UV, BE and BS bits of the authenticator data flags, but BS is set only if BE is
auth_data_UV_BE_BS = h'27'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'06', info='none.ES256.crossOrigin', L=1)

clientDataJSON = h'7b2274797065223a22776562617574686e2e637265617465222c226368616c6c656e6765223a224f2d57717a514e5463554a484930437257576e7951504859647862694332674872434d475666704c4f306b222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a747275652c22657874726144617461223a22636c69656e74446174614a534f4e206d617920626520657874656e6465642077697468206164646974696f6e616c206669656c647320696e20746865206675747572652c207375636820617320746869733a207a5a71754574445239445771705735744257544675673d3d227d'
attestationObject = h'a363666d74646e6f6e656761747453746d74a068617574684461746158a4bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b54500000000883f4f6014f19c09d87aa38123be48d000206e1050c0d2ca2f07c755cb2c66a74c64fa43065c18f938354d9915db2bd5ce57a501020326200121582022200a473f90b11078851550d03b4e44a2279f8c4eca27b3153dedfe03e4e97d225820cbd0be95e746ad6f5a8191be11756e4c0420e72f65b466d39bc56b8b123a9c6e'

Authentication:

challenge = h'876aa517ba83fdee65fcffdbca4c84eeae5d54f8041a1fc85c991e5bbb273137'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'07', info='none.ES256.crossOrigin', L=32)

client_data_gen_flags = h'57'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'08', info='none.ES256.crossOrigin', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
extra_client_data = h'f76a5c4d50f401bcbeab876d9a3e9e7e'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'09', info='none.ES256.crossOrigin', L=16)
; auth_data_UV_BS sets the UV and BS bits of the authenticator data flags, but BS is set only if BE was set in the registration
auth_data_UV_BS = h'0c'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'0a', info='none.ES256.crossOrigin', L=1)

authenticatorData = h'bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b50500000000'
clientDataJSON = h'7b2274797065223a22776562617574686e2e676574222c226368616c6c656e6765223a226832716c463771445f65356c5f505f62796b7945377135645650674547685f49584a6b655737736e4d5463222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a747275652c22657874726144617461223a22636c69656e74446174614a534f4e206d617920626520657874656e6465642077697468206164646974696f6e616c206669656c647320696e20746865206675747572652c207375636820617320746869733a2039327063545644304162792d713464746d6a366566673d3d227d'
signature = h'304402204396b14b216ed47920dc359e46aa0a1d4a912cf9d50f25a58ec236a11db4cf5e02204fdb59ff01656c4b0868e415436a464b0e30e94b02c719b995afaba9c917146b'

16.1.4. ES256 Credential with "topOrigin" in clientDataJSON

Registration:

challenge = h'4e1f4c6198699e33c14f192153f49d7e0e8e3577d5ac416c5f3adc92a41f27e5'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='none.ES256.topOrigin', L=32)

credential_private_key = h'a2d6de40ab974b80d8c1ef78c6d4300097754f7e016afe7f8ea0ad9798b0d420'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='none.ES256.topOrigin', L=32)
client_data_gen_flags = h'54'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'02', info='none.ES256.topOrigin', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
aaguid = h'97586fd09799a76401c200455099ef2a'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'03', info='none.ES256.topOrigin', L=16)
credential_id = h'b8ad59b996047ab18e2ceb57206c362da57458793481f4a8ebf101c7ca7cc0f1'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'04', info='none.ES256.topOrigin', L=32)
; auth_data_UV_BE_BS determines the UV, BE and BS bits of the authenticator data flags, but BS is set only if BE is
auth_data_UV_BE_BS = h'a0'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'05', info='none.ES256.topOrigin', L=1)

clientDataJSON = h'7b2274797065223a22776562617574686e2e637265617465222c226368616c6c656e6765223a225468394d595a68706e6a504254786b68555f53646667364f4e58665672454673587a72636b7151664a2d55222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a747275652c22746f704f726967696e223a2268747470733a2f2f6578616d706c652e636f6d227d'
attestationObject = h'a363666d74646e6f6e656761747453746d74a068617574684461746158a4bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b5410000000097586fd09799a76401c200455099ef2a0020b8ad59b996047ab18e2ceb57206c362da57458793481f4a8ebf101c7ca7cc0f1a5010203262001215820a1c47c1d82da4ebe82cd72207102b380670701993bc35398ae2e5726427fe01d22582086c1080d82987028c7f54ecb1b01185de243b359294a0ed210cd47480f0adc88'

Authentication:

challenge = h'd54a5c8ca4b62a8e3bb321e3b2bc73856f85a10150db2939ac195739eb1ea066'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'06', info='none.ES256.topOrigin', L=32)

client_data_gen_flags = h'77'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'07', info='none.ES256.topOrigin', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
extra_client_data = h'52216824c5514070c0156162e2fc54a5'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'08', info='none.ES256.topOrigin', L=16)
; auth_data_UV_BS sets the UV and BS bits of the authenticator data flags, but BS is set only if BE was set in the registration
auth_data_UV_BS = h'9f'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'09', info='none.ES256.topOrigin', L=1)

authenticatorData = h'bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b50500000000'
clientDataJSON = h'7b2274797065223a22776562617574686e2e676574222c226368616c6c656e6765223a22315570636a4b53324b6f34377379486a7372787a68572d466f51465132796b3572426c584f6573656f4759222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a747275652c22746f704f726967696e223a2268747470733a2f2f6578616d706c652e636f6d222c22657874726144617461223a22636c69656e74446174614a534f4e206d617920626520657874656e6465642077697468206164646974696f6e616c206669656c647320696e20746865206675747572652c207375636820617320746869733a205569466f4a4d565251484441465746693476785570513d3d227d'
signature = h'304402206a19613fa8cfacfc8027272aec5dae3555fea9f983d841581466678d71e6761a02207a9785ba22e48eb18525850357d9dc70795aaad2e6021159c4a4a183146eaa71'

16.1.5. ES256 Credential with very long credential ID

Registration:

challenge = h'1113c7265ccf5e65124282fa1d7819a7a14cb8539aa4cdbec7487e5f35d8ec6c'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='none.ES256.long-credential-id', L=32)

credential_private_key = h'6fd2149bb5f1597fe549b138794bde61893b2dc32ca316de65f04808dac211dc'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='none.ES256.long-credential-id', L=32)
client_data_gen_flags = h'90'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'02', info='none.ES256.long-credential-id', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
aaguid = h'8f3360c2cd1b0ac14ffe0795c5d2638e'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'03', info='none.ES256.long-credential-id', L=16)
credential_id = h'3a761a4e1674ad6c4305869435c0eee9c286172c229bb91b48b4ada140c0863417031305cce5b4a27a88d7fe728a5f5a627de771b4b40e77f187980c124f9fe832d7136010436a056cce716680587d23187cf1fc2c62ae86fc3e508ee9617ffc74fbc10488ec16ec5e9096328669a898709b655e549738c666c1ae6281dc3b5f733c251d3eefb76ee70a3805ca91bcc18e49c8dc7f63ebcb486ba8c3d6ab52b88ff72c6a5bb47c32f3ee8683a3ddc8abf60870448ec8a21b5bdcb183c7dead870255575a6df96eb1b6a2a1019780cba9e4887b17ff1164bbbcc10eb0d86ed75984cd3fa3419103024507dfd9ce8f92c56af7914cb0bb50b87ba82a312bb7dcd93028dbdcd6adb266979667158335171e3682d37755701edbf9d872846a291d49e57ef09da1ec637f5052ed2aa7407f7e61827468e94b461844f4c67be5fa9c6055a566f8fdfc29d4bf78a9ff275f552cc68ba543fa3962eea36fd1ea8453764577d021d0a181efc1f6100ab2e4110039e21ee16970bda7432b6134492155afc126295b3a2eccd12c66a68e340969e995e3e8c9c476e395cfc21203414110779474f1c9797406637dbe414f132519d3bf0ce4f01734ef0e1a12c3ad604ff15d766b1624db6a5a7ccbff7bc35c9908df94aba277e0af48f04ff3d16381c47e5a37ed3988a67a3b1ecaa926336b33391fff04128f869991c9fabd905b6fe3ceef5f8b630ec1c5d2636d5b1961ad5ca5004170f6f5e482792aad989b0287fe91e5c479403397152f1fa56aa79b156eb47e6c8ea3eb175c34cfb38ad8e772874639b1023d4d01395c94e55831671cc022aa6fa1e02a02c2e4abc776f6960e51f83b71a8c0f207b6a347573977812c9aa5480b0011aa739bd4b76c18c000cc4757cceccb920f007c40c00e37e5ab21476cd9f6054a8fffb55a108f5c706e2cea2049d81fd321ff47d2a5761b0800955ab1d4f4889f55a84e2601c684f17a4ade7453ea49591d0b59c8d9a765052f62219cf6ef4a5dd9539f0617d6ebbebce7c000455475d18449e25c49ef9a1e3efe18c09082ebe2058d7c347defaa92f0664553b805c7d76bbfce5f330aca220ac90a789380fc479ea0d8793205813cca590a912f699ad52f991a1bc0a503c3ec4b2a696719e3c26591a87127f7305cc7e72f4c8e39355ebb06a5b1042990f38710ee7aa612ee4374bb82e878585a70a96c2a6b47f101a4ff154be4fd76a3167577a5cc54d9167c154c69ac35485e44cc898b719e1be3cc9c0fb5624b8f8a0dae10947a41bf848b6c1bb33d1006ec077d7e286e3f2a7b4843716390119449fe2721e81a5ed2333d331c7120765da58fadae73c19d9a8c4509cf8ac1e9d98b799a5274509069739b5823f3fb496663820033426988eefca53e580e0f9e0dfe0992fc2e53a97e053639f98577058f995bdbd41cefdb'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'04', info='none.ES256.long-credential-id', L=1023)
; auth_data_UV_BE_BS determines the UV, BE and BS bits of the authenticator data flags, but BS is set only if BE is
auth_data_UV_BE_BS = h'69'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'05', info='none.ES256.long-credential-id', L=1)

clientDataJSON = h'7b2274797065223a22776562617574686e2e637265617465222c226368616c6c656e6765223a22455250484a6c7a50586d5553516f4c364858675a7036464d75464f61704d322d7830682d587a5859374777222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73657d'
attestationObject = h'a363666d74646e6f6e656761747453746d74a0686175746844617461590483bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b549000000008f3360c2cd1b0ac14ffe0795c5d2638e03ff3a761a4e1674ad6c4305869435c0eee9c286172c229bb91b48b4ada140c0863417031305cce5b4a27a88d7fe728a5f5a627de771b4b40e77f187980c124f9fe832d7136010436a056cce716680587d23187cf1fc2c62ae86fc3e508ee9617ffc74fbc10488ec16ec5e9096328669a898709b655e549738c666c1ae6281dc3b5f733c251d3eefb76ee70a3805ca91bcc18e49c8dc7f63ebcb486ba8c3d6ab52b88ff72c6a5bb47c32f3ee8683a3ddc8abf60870448ec8a21b5bdcb183c7dead870255575a6df96eb1b6a2a1019780cba9e4887b17ff1164bbbcc10eb0d86ed75984cd3fa3419103024507dfd9ce8f92c56af7914cb0bb50b87ba82a312bb7dcd93028dbdcd6adb266979667158335171e3682d37755701edbf9d872846a291d49e57ef09da1ec637f5052ed2aa7407f7e61827468e94b461844f4c67be5fa9c6055a566f8fdfc29d4bf78a9ff275f552cc68ba543fa3962eea36fd1ea8453764577d021d0a181efc1f6100ab2e4110039e21ee16970bda7432b6134492155afc126295b3a2eccd12c66a68e340969e995e3e8c9c476e395cfc21203414110779474f1c9797406637dbe414f132519d3bf0ce4f01734ef0e1a12c3ad604ff15d766b1624db6a5a7ccbff7bc35c9908df94aba277e0af48f04ff3d16381c47e5a37ed3988a67a3b1ecaa926336b33391fff04128f869991c9fabd905b6fe3ceef5f8b630ec1c5d2636d5b1961ad5ca5004170f6f5e482792aad989b0287fe91e5c479403397152f1fa56aa79b156eb47e6c8ea3eb175c34cfb38ad8e772874639b1023d4d01395c94e55831671cc022aa6fa1e02a02c2e4abc776f6960e51f83b71a8c0f207b6a347573977812c9aa5480b0011aa739bd4b76c18c000cc4757cceccb920f007c40c00e37e5ab21476cd9f6054a8fffb55a108f5c706e2cea2049d81fd321ff47d2a5761b0800955ab1d4f4889f55a84e2601c684f17a4ade7453ea49591d0b59c8d9a765052f62219cf6ef4a5dd9539f0617d6ebbebce7c000455475d18449e25c49ef9a1e3efe18c09082ebe2058d7c347defaa92f0664553b805c7d76bbfce5f330aca220ac90a789380fc479ea0d8793205813cca590a912f699ad52f991a1bc0a503c3ec4b2a696719e3c26591a87127f7305cc7e72f4c8e39355ebb06a5b1042990f38710ee7aa612ee4374bb82e878585a70a96c2a6b47f101a4ff154be4fd76a3167577a5cc54d9167c154c69ac35485e44cc898b719e1be3cc9c0fb5624b8f8a0dae10947a41bf848b6c1bb33d1006ec077d7e286e3f2a7b4843716390119449fe2721e81a5ed2333d331c7120765da58fadae73c19d9a8c4509cf8ac1e9d98b799a5274509069739b5823f3fb496663820033426988eefca53e580e0f9e0dfe0992fc2e53a97e053639f98577058f995bdbd41cefdba50102032620012158203b8176b7504489cc593046d7988abb7905a742de6ac2cdc748a873c663e90cb12258201436d5edc9a75f23999eef9d5950a5c2455514ee1014084720f841a06b828a11'

Authentication:

challenge = h'ef1deba56dce48f674a447ccf63b9599258ce87648e5c396f2ef0ca1da460e3b'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'06', info='none.ES256.long-credential-id', L=32)

client_data_gen_flags = h'80'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'07', info='none.ES256.long-credential-id', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
; auth_data_UV_BS sets the UV and BS bits of the authenticator data flags, but BS is set only if BE was set in the registration
auth_data_UV_BS = h'e5'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'08', info='none.ES256.long-credential-id', L=1)

authenticatorData = h'bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b50d00000000'
clientDataJSON = h'7b2274797065223a22776562617574686e2e676574222c226368616c6c656e6765223a22377833727057334f53505a307045664d396a75566d53574d36485a4935634f573875384d6f647047446a73222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73657d'
signature = h'304502203ecef83fb12a0cae7841055f9f87103a99fd14b424194bbf06c4623d3ee6e3fd022100d2ace346db262b1374a6b70faa51f518a42ddca13a4125ce6f5052a75bac9fb6'

16.1.6. Packed Attestation with ES256 Credential

Registration:

challenge = h'c1184a5fddf8045e13dc47f54b61f5a656b666b59018f16d870e9256e9952012'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='packed.ES256', L=32)

credential_private_key = h'36ed7bea2357cefa8c4ec7e134f3312d2e6ca3058519d0bcb4c1424272010432'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='packed.ES256', L=32)
client_data_gen_flags = h'8d'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'02', info='packed.ES256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
extra_client_data = h'f5af1b3588ca0a05ab05753e7c29756a'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'03', info='packed.ES256', L=16)
aaguid = h'876ca4f52071c3e9b25509ef2cdf7ed6'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'04', info='packed.ES256', L=16)
credential_id = h'c9a6f5b3462d02873fea0c56862234f99f081728084e511bb7760201a89054a5'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'05', info='packed.ES256', L=32)
; auth_data_UV_BE_BS determines the UV, BE and BS bits of the authenticator data flags, but BS is set only if BE is
auth_data_UV_BE_BS = h'4f'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'06', info='packed.ES256', L=1)
attestation_private_key = h'ec2804b222552b4b277d1f58f8c4343c0b0b0db5474eb55365c89d66a2bc96be'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'07', info='packed.ES256', L=32)
attestation_cert_serial_number = h'88c220f83c8ef1feafe94deae45faad0'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'08', info='packed.ES256', L=16)

clientDataJSON = h'7b2274797065223a22776562617574686e2e637265617465222c226368616c6c656e6765223a227752684b58393334424634543345663153324831706c61325a725751475046746877365356756d56494249222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73652c22657874726144617461223a22636c69656e74446174614a534f4e206d617920626520657874656e6465642077697468206164646974696f6e616c206669656c647320696e20746865206675747572652c207375636820617320746869733a20396138624e596a4b436757724258552d66436c3161673d3d227d'
attestationObject = h'a363666d74667061636b65646761747453746d74a363616c67266373696758473045022025fcee945801b94e63d7c029e6f761654cf02e7100d5364a3b90e03daa6276fc022100eabcdf4ce19feb0980e829c3b6137079b18e42f43ce5c3c573b83368794f354c637835638159022530820221308201c8a00302010202110088c220f83c8ef1feafe94deae45faad0300a06082a8648ce3d0403023062311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331253023060355040b0c1c41757468656e74696361746f72204174746573746174696f6e204341310b30090603550406130241413020170d3234303130313030303030305a180f33303234303130313030303030305a305f311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331223020060355040b0c1941757468656e74696361746f72204174746573746174696f6e310b30090603550406130241413059301306072a8648ce3d020106082a8648ce3d03010703420004a91ba4389409dd38a428141940ca8feb1ac0d7b4350558104a3777a49322f3798440f378b3398ab2d3bb7bf91322c92eb23556f59ad0a836fec4c7663b0e4dc3a360305e300c0603551d130101ff04023000300e0603551d0f0101ff040403020780301d0603551d0e04160414a589ba72d060842ab11f74fb246bdedab16f9b9b301f0603551d2304183016801445aff715b0dd786741fee996ebc16547a3931b1e300a06082a8648ce3d040302034700304402201726b9d85ecd8a5ed51163722ca3a20886fd9b242a0aa0453d442116075defd502207ef471e530ac87961a88a7f0d0c17b091ffc6b9238d30f79f635b417be5910e768617574684461746158a4bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b54d00000000876ca4f52071c3e9b25509ef2cdf7ed60020c9a6f5b3462d02873fea0c56862234f99f081728084e511bb7760201a89054a5a50102032620012158201cf27f25da591208a4239c2e324f104f585525479a29edeedd830f48e77aeae522582059e4b7da6c0106e206ce390c93ab98a15a5ec3887e57f0cc2bece803b920c423'

Authentication:

challenge = h'b1106fa46a57bef1781511c0557dc898a03413d5f0f17d244630c194c7e1adb5'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'09', info='packed.ES256', L=32)

client_data_gen_flags = h'75'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'0a', info='packed.ES256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
extra_client_data = h'019330c8cc486c3f3eba0b85369eabf1'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'0b', info='packed.ES256', L=16)
; auth_data_UV_BS sets the UV and BS bits of the authenticator data flags, but BS is set only if BE was set in the registration
auth_data_UV_BS = h'46'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'0c', info='packed.ES256', L=1)

authenticatorData = h'bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b50d00000000'
clientDataJSON = h'7b2274797065223a22776562617574686e2e676574222c226368616c6c656e6765223a2273524276704770587676463446524841565833496d4b4130453958773858306b526a44426c4d6668726255222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73652c22657874726144617461223a22636c69656e74446174614a534f4e206d617920626520657874656e6465642077697468206164646974696f6e616c206669656c647320696e20746865206675747572652c207375636820617320746869733a20415a4d77794d78496244382d756775464e70367238513d3d227d'
signature = h'30460221009d8d54895393894d37b9fa7bdfbcff05403de3cf0d6443ffb394fa239f101579022100c8871288f19c6c48a3b64c09d39868c12d16ed80ea4c5d8890288975c0272f50'

16.1.7. Packed Attestation with ES384 Credential

Registration:

challenge = h'567b030b3e186bc1d169dd45b79f9e0d86f1fd63474da3eade5bdb8db379a0c3'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='packed.ES384', L=32)

credential_private_key = h'271e37d309c558c0f35222b37abba7500377d68e179e4c74b0cb558551b2e5276b47b90a317ca8ebbe1a12c93c2d5dd9'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='packed.ES384', L=48)
client_data_gen_flags = h'32'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'02', info='packed.ES384', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
aaguid = h'e950dcda3bdae1d087cda380a897848b'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'03', info='packed.ES384', L=16)
credential_id = h'953ae2dd9f28b1a1d5802c83e1f65833bb9769a08de82d812bc27c13fc6f06a9'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'04', info='packed.ES384', L=32)
; auth_data_UV_BE_BS determines the UV, BE and BS bits of the authenticator data flags, but BS is set only if BE is
auth_data_UV_BE_BS = h'db'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'05', info='packed.ES384', L=1)
attestation_private_key = h'8d979fbb6e49c4eeb5925a2bca0fcdb023d3fb90bcadce8391da9da4ed2aee9a'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'06', info='packed.ES384', L=32)
attestation_cert_serial_number = h'3d0a5588bb87ebb1d4cee4a1807c1b7c'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'07', info='packed.ES384', L=16)

clientDataJSON = h'7b2274797065223a22776562617574686e2e637265617465222c226368616c6c656e6765223a22566e7344437a3459613848526164314674352d65445962785f574e4854615071336c76626a624e356f4d4d222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73657d'
attestationObject = h'a363666d74667061636b65646761747453746d74a363616c67266373696758473045022100c56ecc970b7843833e0f461fde26233f61eb395161d481558c08b9c6ed61675b022029f5e05033705cd0f9b0a07e149468ec308a4f84906409efdceb1da20a7518d6637835638159022530820221308201c7a00302010202103d0a5588bb87ebb1d4cee4a1807c1b7c300a06082a8648ce3d0403023062311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331253023060355040b0c1c41757468656e74696361746f72204174746573746174696f6e204341310b30090603550406130241413020170d3234303130313030303030305a180f33303234303130313030303030305a305f311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331223020060355040b0c1941757468656e74696361746f72204174746573746174696f6e310b30090603550406130241413059301306072a8648ce3d020106082a8648ce3d0301070342000417e5cc91d676d370e36aa7de40c25aacb45a3845f13d2932088ece2270b9b431241c219c22d0c256c9438ade00f2c05e62f8ef906b9b997ae9f3c460c2db66f5a360305e300c0603551d130101ff04023000300e0603551d0f0101ff040403020780301d0603551d0e04160414c7c8dd95382a2230e4c0dd3664338fa908169a9c301f0603551d2304183016801445aff715b0dd786741fee996ebc16547a3931b1e300a06082a8648ce3d0403020348003045022054068cc9ae038937b7c468c307edb9c6927ffdeb6a20070c483eb40330f99f10022100cf41953919c3c04693d6b1f42a613753f204e70e85fc6e9b17036170b83596e068617574684461746158c5bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b55900000000e950dcda3bdae1d087cda380a897848b0020953ae2dd9f28b1a1d5802c83e1f65833bb9769a08de82d812bc27c13fc6f06a9a5010203382220022158304866bd8b01da789e9eb806e5eab05ae5a638542296ab057a2f1bbce9b58f8a08b9171390b58a37ac7fffc2c5f45857da2258302a0b024c7f4b72072a1f96bd30a7261aae9571dd39870eb29e55c0941c6b08e89629a1ea1216aa64ce57c2807bf3901a'

Authentication:

challenge = h'ff41c3d25dbd8966fb61e28ef5e47041e137ed268520412d76202ba0ad2d1453'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'08', info='packed.ES384', L=32)

client_data_gen_flags = h'0c'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'09', info='packed.ES384', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
; auth_data_UV_BS sets the UV and BS bits of the authenticator data flags, but BS is set only if BE was set in the registration
auth_data_UV_BS = h'af'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'0a', info='packed.ES384', L=1)

authenticatorData = h'bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b50d00000000'
clientDataJSON = h'7b2274797065223a22776562617574686e2e676574222c226368616c6c656e6765223a225f304844306c32396957623759654b4f39655277516545333753614649454574646941726f4b307446464d222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73657d'
signature = h'3065023100e4efbb46745ed00e67c4d51ab2bacab2af62ffa8b7c5fecec6d7d9bf2582275034a713a3dd731685eee81adfaf6aa63f0230161655353f07e018a3c2539f8de7c8c4cf88d4c32d2be29fe4e76fa096ecc9458bbfe0895d57129ab324130e6f0692db'

16.1.8. Packed Attestation with ES512 Credential

Registration:

challenge = h'4ee220cd92b07e11451cb4c201c5755bd879848e492a9b12d79135c62764dc2fd28ead4808cafe5ad1de8fa9e08d4a8eeafea4dfb333877b02bc503f475d3b0c1394a7683baaf4f2477829f7b8cf750948985558748c073068396fcfdcd3f245bf2038e6bb38d7532768aad13be8c118f727722e7426139041e9caca503884c5'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='packed.ES512', L=128)

credential_private_key = h'f11120594f6a4944ac3ba59adbbc5b85016895b649f4cc949a610f4b48be47b318850bacb105f747647bba8852b6b8e52a0b3679f1bbbdfe18c99409bcb644fa45'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='packed.ES512', L=65)
client_data_gen_flags = h'6d'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'02', info='packed.ES512', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
extra_client_data = h'a37a958ce2f6b535a6e06c64cc8fd082'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'03', info='packed.ES512', L=16)
aaguid = h'39d8ce6a3cf61025775083a738e5c254'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'04', info='packed.ES512', L=16)
credential_id = h'd17d5af7e3f37c56622a67c8462c9e1c6336dfccb8b61d359dc47378dba58ce4'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'05', info='packed.ES512', L=32)
; auth_data_UV_BE_BS determines the UV, BE and BS bits of the authenticator data flags, but BS is set only if BE is
auth_data_UV_BE_BS = h'cf'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'06', info='packed.ES512', L=1)
attestation_private_key = h'ffbc89d5f75994f52dc5e7538ee269402d26995d40c16fb713473e34fca98be4'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'07', info='packed.ES512', L=32)
attestation_cert_serial_number = h'8a128b7ebe52b993835779e6d9b81355'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'08', info='packed.ES512', L=16)

clientDataJSON = h'7b2274797065223a22776562617574686e2e637265617465222c226368616c6c656e6765223a22547549677a5a4b7766684646484c544341635631573968356849354a4b707353313545317869646b33435f536a713149434d722d577448656a366e676a55714f3676366b33374d7a683373437646415f5231303744424f5570326737717654795233677039376a5064516c496d465659644977484d47673562385f63305f4a46767941343572733431314d6e614b72524f2d6a424750636e636935304a684f5151656e4b796c4134684d55222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73652c22657874726144617461223a22636c69656e74446174614a534f4e206d617920626520657874656e6465642077697468206164646974696f6e616c206669656c647320696e20746865206675747572652c207375636820617320746869733a206f3371566a4f4c327454576d3447786b7a495f5167673d3d227d'
attestationObject = h'a363666d74667061636b65646761747453746d74a363616c67266373696758483046022100c48fcbd826bbc79680802026688d41ab6da8c3a1d22ab6cecf36c8d7695d22500221008767dfe591277e973078d5692c8c35cf9d579792822e7145c96a0ac4515df5b0637835638159022730820223308201c8a0030201020211008a128b7ebe52b993835779e6d9b81355300a06082a8648ce3d0403023062311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331253023060355040b0c1c41757468656e74696361746f72204174746573746174696f6e204341310b30090603550406130241413020170d3234303130313030303030305a180f33303234303130313030303030305a305f311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331223020060355040b0c1941757468656e74696361746f72204174746573746174696f6e310b30090603550406130241413059301306072a8648ce3d020106082a8648ce3d03010703420004940b68885291536e2f7c60c05acfb252e7eebcf4304425dd93ab7b1962f20492bf18dc0f12862599e81fb764ac92151f9a78fcbb35d7a26c8c52949b18133c06a360305e300c0603551d130101ff04023000300e0603551d0f0101ff040403020780301d0603551d0e041604143ffad863abcd3dc5717b8a252189f41af97e7f31301f0603551d2304183016801445aff715b0dd786741fee996ebc16547a3931b1e300a06082a8648ce3d0403020349003046022100832c8b64c4f0188bd32e1bec63e13301cdc03165d3ef840d1f3dabb9a5719f83022100add57a9d5bedec98f29222dfc97ea795d055ee13a02a153d02be9ce00aedeb9168617574684461746158e9bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b54d0000000039d8ce6a3cf61025775083a738e5c2540020d17d5af7e3f37c56622a67c8462c9e1c6336dfccb8b61d359dc47378dba58ce4a5010203382320032158420083240a2c3ad21a3dc0a6daa3d8bc05a46d7cd9825ba010ae2a22686c2d6d663d7d5f678987fb1e767542e63dc197ae915e25f8ee284651af29066910a2cc083f50225842017337df47ab5cce5d716ef8caffa97a3012689b1f326ea6c43a1ba9596c72f71f0122390143552b42be772b4c35ffb961220c743b486a601ea4cb6d5412f5b078d3'

Authentication:

challenge = h'08d3190c6dcb3d4f0cb659a0333bf5ea124ddf36a0cd33d5204b0d7a22a8cc26f2e4f169d200285c77b3fb22e0f1c7f49a87d4be2d25e92d797808ddaaa9b5715efd3a6ada9339d3052a687dbc5d2f8c871b0451e0691f57ad138541b7b72e7aa8933729ec1c664bf2e4dedae1616d08ecefa80a2a53b103663ce5a881048829'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'09', info='packed.ES512', L=128)

client_data_gen_flags = h'ac'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'0a', info='packed.ES512', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
; auth_data_UV_BS sets the UV and BS bits of the authenticator data flags, but BS is set only if BE was set in the registration
auth_data_UV_BS = h'52'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'0b', info='packed.ES512', L=1)

authenticatorData = h'bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b51900000000'
clientDataJSON = h'7b2274797065223a22776562617574686e2e676574222c226368616c6c656e6765223a22434e4d5a4447334c5055384d746c6d674d7a763136684a4e337a61677a5450564945734e65694b6f7a436279355046703067416f5848657a2d794c67386366306d6f66557669306c3653313565416a6471716d31635637394f6d72616b7a6e544253706f666278644c3479484777525234476b66563630546855473374793536714a4d334b6577635a6b7679354e376134574674434f7a7671416f71553745445a6a7a6c7149454569436b222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73657d'
signature = h'3081870242009bda02fe384e77bcb9fb42b07c395b7a53ec9d9616dd0308ab8495c2141c8364c7d16e212a4a4fb8e3987ff6c99eafd64d8484fd28c3fc7968f658a9033d1bb1b802416383e9f3ee20c691b66620299fef36bea2df4d39c92b2ead92f58e7b79ab0d9864d2ebf3b0dcc66ea13234492ccee6e9d421db43c959bcb94c162dc9494136c9f6'

16.1.9. Packed Attestation with RS256 Credential

Registration:

challenge = h'bea8f0770009bd57f2c0df6fea9f743a27e4b61bbe923c862c7aad7a9fc8e4a6'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='packed.RS256', L=32)

; The two smallest Mersenne primes 2^p - 1 where p >= 1024
private_key_p = 2^1279 - 1 = h'7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff'
private_key_q = 2^2203 - 1 = h'07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff'
client_data_gen_flags = h'1c'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='packed.RS256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
aaguid = h'428f8878298b9862a36ad8c7527bfef2'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'02', info='packed.RS256', L=16)
credential_id = h'992a18acc83f67533600c1138a4b4c4bd236de13629cf025ed17cb00b00b74df'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'03', info='packed.RS256', L=32)
; auth_data_UV_BE_BS determines the UV, BE and BS bits of the authenticator data flags, but BS is set only if BE is
auth_data_UV_BE_BS = h'7e'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'04', info='packed.RS256', L=1)
attestation_private_key = h'08a1322d5aa5b5b40cd67c2cc30b038e7921d7888c84c342d50d79f0c5fc3464'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'05', info='packed.RS256', L=32)
attestation_cert_serial_number = h'1f6fb7a5ece81b45896b983a995da5f3'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'06', info='packed.RS256', L=16)

clientDataJSON = h'7b2274797065223a22776562617574686e2e637265617465222c226368616c6c656e6765223a2276716a776477414a76566679774e3976367039304f69666b7468752d6b6a79474c48717465705f49354b59222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73657d'
attestationObject = h'a363666d74667061636b65646761747453746d74a363616c672663736967584730450221008b8c5c6ea8c142c032e0be69e1353d44461c5c9109941cdda951b976eb95b6b302204d52f406c19e254b3ff9589bd18070fb055ac8db12fdd0a6734bea9d7168e900637835638159022630820222308201c7a00302010202101f6fb7a5ece81b45896b983a995da5f3300a06082a8648ce3d0403023062311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331253023060355040b0c1c41757468656e74696361746f72204174746573746174696f6e204341310b30090603550406130241413020170d3234303130313030303030305a180f33303234303130313030303030305a305f311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331223020060355040b0c1941757468656e74696361746f72204174746573746174696f6e310b30090603550406130241413059301306072a8648ce3d020106082a8648ce3d03010703420004b7b36b7542a11120b443c794d0c99fdc25a06b76586413d81e086163ef6fe147a557afc34e2861d9057d6d465d4705a0310550bdeeb5f35ee35b9425ab859981a360305e300c0603551d130101ff04023000300e0603551d0f0101ff040403020780301d0603551d0e04160414fb37b647bccfb9e54d989eaaacc1633868703fb3301f0603551d2304183016801445aff715b0dd786741fee996ebc16547a3931b1e300a06082a8648ce3d0403020349003046022100b86bc129d92afca7d9869a39f70f139a305b4073a39eb654d81424bed5757d91022100cf9f7c60cab7c4a7d3e7f0020f281a93d4fd0a9f95121b989f56932a68885fba68617574684461746159021bbfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b55d00000000428f8878298b9862a36ad8c7527bfef20020992a18acc83f67533600c1138a4b4c4bd236de13629cf025ed17cb00b00b74dfa4010303390100205901b403fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000012143010001'

Authentication:

challenge = h'295f59f5fa8fe62c5aca9e27626c78c8da376ae6d8cd2dd29aebad601e1bc4c5'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'07', info='packed.RS256', L=32)

client_data_gen_flags = h'0e'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'08', info='packed.RS256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
; auth_data_UV_BS sets the UV and BS bits of the authenticator data flags, but BS is set only if BE was set in the registration
auth_data_UV_BS = h'ba'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'09', info='packed.RS256', L=1)

authenticatorData = h'bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b51900000000'
clientDataJSON = h'7b2274797065223a22776562617574686e2e676574222c226368616c6c656e6765223a224b56395a39667150356978617970346e596d7834794e6f33617562597a5333536d75757459423462784d55222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73657d'
signature = h'01063d52d7c39b4d432fc7063c5d93e582bdcb16889cd71f888d67d880ea730a428498d3bc8e1ee11f2b1ecbe6c292b118c55ffaaddefa8cad0a54dd137c51f1eec673f1bb6c4d1789d6826a222b22d0f585fc901fdc933212e579d199b89d672aa44891333e6a1355536025e82b25590256c3538229b55737083b2f6b9377e49e2472f11952f79fdd0da180b5ffd901b4049a8f081bb40711bef76c62aed943571f2d0575304cb549d68d8892f95086a30f93716aee818f8dc06e96c0d5e0ed4cfa9fd8773d90464b68cf140f7986666ff9c9e3302acd0535d60d769f465e2ab57ef8aabc89fccfef7ba32a64154a8b3d26be2298f470b8cc5377dbe3dfd4b0b45f8f01e63bde6cfc76b62771f9b70aa27cf40152cad93aa5acd784fd4b90f676e2ea828d0bf2400aebbaae4153e5838f537f88b6228346782a93a899be66ec77de45b3efcf311da6321c92e6b0cd11bfe653bf3e98cee8e341f02d67dbb6f9c98d9e8178090cfb5b70fbc6d541599ac794ae2f1d4de1286ec8de8c2daf7b1d15c8438e90d924df5c19045220a4c8438c1b979bbe016cf3d0eeec23c3999d4882cc645b776de930756612cdc6dd398160ff02a6'

16.1.10. Packed Attestation with Ed25519 Credential

Registration:

challenge = h'560c73a09ce7a1586d61c1d6e41fef149be523e220fc9f385d38ab23702ebf1b'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='packed.Ed25519', L=32)

private_key = h'c87fce9e9cd283d272a2418d9683366f83661e458ad4451f0f1c95cb83b0f0a8'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='packed.Ed25519', L=32)
client_data_gen_flags = h'41'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'02', info='packed.Ed25519', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
extra_client_data = h'db7587e24b9187edb77933754331e443'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'03', info='packed.Ed25519', L=16)
aaguid = h'164009ea09faae7c397bc3e2ad0e7ec0'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'04', info='packed.Ed25519', L=16)
credential_id = h'c6cffa01b7fda368a7e0b29c1384a719820246bca894dd12914708743af0cecd'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'05', info='packed.Ed25519', L=32)
; auth_data_UV_BE_BS determines the UV, BE and BS bits of the authenticator data flags, but BS is set only if BE is
auth_data_UV_BE_BS = h'e8'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'06', info='packed.Ed25519', L=1)
attestation_private_key = h'673ee7fd94405de523fd84a088ab082d75b7fceef02a301e2bca0a28537cf243'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'07', info='packed.Ed25519', L=32)
attestation_cert_serial_number = h'6e391f23f57150dc7a12dad18f2b43ad'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'08', info='packed.Ed25519', L=16)

clientDataJSON = h'7b2274797065223a22776562617574686e2e637265617465222c226368616c6c656e6765223a225667787a6f4a7a6e6f5668745963485735425f76464a766c492d49675f4a38345854697249334175767873222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73652c22657874726144617461223a22636c69656e74446174614a534f4e206d617920626520657874656e6465642077697468206164646974696f6e616c206669656c647320696e20746865206675747572652c207375636820617320746869733a2032335748346b7552682d323365544e31517a486b51773d3d227d'
attestationObject = h'a363666d74667061636b65646761747453746d74a363616c672663736967584730450220730a54d4f76cb1f2b7dd4a5a6eee3374e3c8a60fb3c4daa527c9277e365b64aa0221008b31a04a28cc4148b14c42a916548ee7f430bc7629295b42ee93e5d1aaba8ee6637835638159022530820221308201c7a00302010202106e391f23f57150dc7a12dad18f2b43ad300a06082a8648ce3d0403023062311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331253023060355040b0c1c41757468656e74696361746f72204174746573746174696f6e204341310b30090603550406130241413020170d3234303130313030303030305a180f33303234303130313030303030305a305f311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331223020060355040b0c1941757468656e74696361746f72204174746573746174696f6e310b30090603550406130241413059301306072a8648ce3d020106082a8648ce3d03010703420004fb96a581a0b36742a8c45d6ffb5af1ef155524b50339445ec1109874045e0087db77edef91f3dc949927470d84b01627087b72c86b7c9d02e1389cba680ffc36a360305e300c0603551d130101ff04023000300e0603551d0f0101ff040403020780301d0603551d0e04160414ef2ce1a86caba85121130a16e8ce82a75d5a6653301f0603551d2304183016801445aff715b0dd786741fee996ebc16547a3931b1e300a06082a8648ce3d0403020348003045022100ad4fa628cffba5a642a562cbfefe63efecce26d90c80114114d1745383e12f01022028af87ba3b0ff868a34b9458bc6973b27380a328dd87b7436651ffa823280bca6861757468446174615881bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b54900000000164009ea09faae7c397bc3e2ad0e7ec00020c6cffa01b7fda368a7e0b29c1384a719820246bca894dd12914708743af0cecda401010327200621582089f81eba4a1f510cb243ff7fb9e9cf899bf627e49ce1ac3c3eae8adb2a8d7d7b'

Authentication:

challenge = h'3790da8b2b72ee8ce19761787ad38cbfaa697eb3ca013a1342988756b98785ab'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'09', info='packed.Ed25519', L=32)

client_data_gen_flags = h'de'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'0a', info='packed.Ed25519', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
; auth_data_UV_BS sets the UV and BS bits of the authenticator data flags, but BS is set only if BE was set in the registration
auth_data_UV_BS = h'18'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'0b', info='packed.Ed25519', L=1)

authenticatorData = h'bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b51900000000'
clientDataJSON = h'7b2274797065223a22776562617574686e2e676574222c226368616c6c656e6765223a224e35446169797479376f7a686c32463465744f4d763670706672504b41546f545170694856726d48686173222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73657d'
signature = h'4c873571377ac019f257d6bf07249f63ac2487483c51bc511ce0f0e3266c840cb07a09cdc445a2f963d8603a9f0f6cf9ce709d7fc6a96c7c51ea08d33776010c'

16.1.11. TPM Attestation with ES256 Credential

Registration:

challenge = h'cfc82cdf1ceee876120aa88f0364f0910193460cfb97a317b2fe090694f9a299'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='tpm.ES256', L=32)

credential_private_key = h'80c60805e564f6d33e7abdff9d32e3db09a6219fe378a268d23107191b18e39f'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='tpm.ES256', L=32)
client_data_gen_flags = h'84'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'02', info='tpm.ES256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
aaguid = h'4b92a377fc5f6107c4c85c190adbfd99'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'03', info='tpm.ES256', L=16)
credential_id = h'ec27bec7521c894bbb821105ea3724c90e770cf1fa354157ef18d0f18f78bea9'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'04', info='tpm.ES256', L=32)
; auth_data_UV_BE_BS determines the UV, BE and BS bits of the authenticator data flags, but BS is set only if BE is
auth_data_UV_BE_BS = h'af'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'05', info='tpm.ES256', L=1)
attestation_private_key = h'6210f09e0ce7593e851a880a4bdde2d2192afeac46104abce1a890a5a71cf0c6'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'06', info='tpm.ES256', L=32)
attestation_cert_serial_number = h'311fc42da0ab10c43a9b1bf3a75e34e2'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'07', info='tpm.ES256', L=16)

clientDataJSON = h'7b2274797065223a22776562617574686e2e637265617465222c226368616c6c656e6765223a227a38677333787a753648595343716950413254776b51475452677a376c364d587376344a427054356f706b222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73657d'
attestationObject = h'a363666d746374706d6761747453746d74a663616c67266373696758463044022066e5826a652091030fd444e33c3eca2bc6dc548cf3045013addb38aa6457a21002203f3a5c95c9e707d0e555041bcc8698ee4ebc04e26cc8bae459705471789851766376657263322e30637835638159023a30820236308201dca0030201020210311fc42da0ab10c43a9b1bf3a75e34e2300a06082a8648ce3d0403023062311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331253023060355040b0c1c41757468656e74696361746f72204174746573746174696f6e204341310b30090603550406130241413020170d3234303130313030303030305a180f33303234303130313030303030305a30003059301306072a8648ce3d020106082a8648ce3d03010703420004c54e3f109094f60d7699b7db5d838569ffd1f3e1c9e897cd9eb40063f9402e3e9937e936cf1fcd5eb743ff443c97ab2edcd7c8e0e6cf6cfd413b8ab19fffa769a381d33081d0300c0603551d130101ff04023000300e0603551d0f0101ff040403020780301d0603551d0e041604145f546cb6973d4981e80fcdc7463859f5879680e4301f0603551d2304183016801445aff715b0dd786741fee996ebc16547a3931b1e30100603551d250409300706056781050803305e0603551d110101ff04543052a450304e314c3014060567810502010c0b69643a30303030303030303014060567810502030c0b69643a3030303030303030301e060567810502020c15576562417574686e207465737420766563746f7273300a06082a8648ce3d0403020348003045022063c9a2797b8066f1db34dd609f1ab6695607e7a98e9ff8090a68853c9a9fc949022100a55831a39f5b8a2aa9a68837829cabf43fea2a5cea4859ae851cac78e6ac3e97677075624172656158560023000b0004000000000010001000030010002041202698c9d9753fb4bb3f27cd09fe6b8afdb76438ee2ae54d7c9dade10d864b0020d8735115cdb330a63ea1d6e43d5000f4bd56f99bce83ee1d73301fc270116d076863657274496e666f5869ff544347801700000020277d0e05579dd013215a62273f7f3a3e7e191ead2654a3036d75a5a3ee37a6b0000000000000000011111111222222223300000000000000000022000b9c42d8aad5939331b9af3711af179f17123178098c9a7d0ca89fcd1fc800f3c7000068617574684461746158a4bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b54d000000004b92a377fc5f6107c4c85c190adbfd990020ec27bec7521c894bbb821105ea3724c90e770cf1fa354157ef18d0f18f78bea9a501020326200121582041202698c9d9753fb4bb3f27cd09fe6b8afdb76438ee2ae54d7c9dade10d864b225820d8735115cdb330a63ea1d6e43d5000f4bd56f99bce83ee1d73301fc270116d07'

Authentication:

challenge = h'00093b66c21d5b5e89f7a07082118907ea3e502d343b314b8c5a54d62db202fb'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'08', info='tpm.ES256', L=32)

client_data_gen_flags = h'86'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'09', info='tpm.ES256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
; auth_data_UV_BS sets the UV and BS bits of the authenticator data flags, but BS is set only if BE was set in the registration
auth_data_UV_BS = h'87'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'0a', info='tpm.ES256', L=1)

authenticatorData = h'bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b50d00000000'
clientDataJSON = h'7b2274797065223a22776562617574686e2e676574222c226368616c6c656e6765223a2241416b375a7349645731364a393642776768474a422d6f2d554330304f7a464c6a46705531693279417673222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73657d'
signature = h'3045022060dc76b1607ec716c6e5eba8d056695ed6bc47b2e3d7a729c34e759e3ab66aa0022100d010a9e8fddcb64c439dfdca628ddb33cf245d567d157d9f66f942601bed9b38'

16.1.12. Android Key Attestation with ES256 Credential

Registration:

challenge = h'3de1f0b7365dccde3ff0cbf25e26ffa7baff87ef106c80fc865dc402d9960050'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='android-key.ES256', L=32)

credential_private_key = h'd4328d911acb0ebcc42aad29b29ffb55d5bc31d8af7ca9a16703d56c21abc7b4'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='android-key.ES256', L=32)
client_data_gen_flags = h'73'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'02', info='android-key.ES256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
extra_client_data = h'555d5c42e476a8b33f6a63dfa07ccbd2'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'03', info='android-key.ES256', L=16)
aaguid = h'ade9705e1ce7085b899a540d02199bf8'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'04', info='android-key.ES256', L=16)
credential_id = h'0a4729519788b6ed8a2d772b494e186244d8c798c052960dbc8c10c915176795'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'05', info='android-key.ES256', L=32)
; auth_data_UV_BE_BS determines the UV, BE and BS bits of the authenticator data flags, but BS is set only if BE is
auth_data_UV_BE_BS = h'1e'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'06', info='android-key.ES256', L=1)
attestation_cert_serial_number = h'1ff91f76b63f44812f998b250b0286bf'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'07', info='android-key.ES256', L=16)

clientDataJSON = h'7b2274797065223a22776562617574686e2e637265617465222c226368616c6c656e6765223a2250654877747a5a647a4e345f384d76795869625f7037725f682d385162494438686c334541746d57414641222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73652c22657874726144617461223a22636c69656e74446174614a534f4e206d617920626520657874656e6465642077697468206164646974696f6e616c206669656c647320696e20746865206675747572652c207375636820617320746869733a205656316351755232714c4d5f616d50666f487a4c30673d3d227d'
attestationObject = h'a363666d746b616e64726f69642d6b65796761747453746d74a363616c672663736967584630440220592bbc3c4c5f6158b52be1e085c92848986d7844245dfc9512e1a7e9ff7a2cd8022015bdd0852d3bd091e1c22da4211f4ccf0fdf4d912599d1c6630b1f310d3166f5637835638159026d3082026930820210a00302010202101ff91f76b63f44812f998b250b0286bf300a06082a8648ce3d0403023062311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331253023060355040b0c1c41757468656e74696361746f72204174746573746174696f6e204341310b30090603550406130241413020170d3234303130313030303030305a180f33303234303130313030303030305a305f311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331223020060355040b0c1941757468656e74696361746f72204174746573746174696f6e310b30090603550406130241413059301306072a8648ce3d020106082a8648ce3d0301070342000499169657036d089a2a9821a7d0063d341f1a4613389359636efab5f3cbf1accfdd91c55543176ea99b644406dd1dd63774b6af65ac759e06ff40b1c8ab02df6ba381a83081a5300c0603551d130101ff04023000300e0603551d0f0101ff040403020780301d0603551d0e041604141ac81e50641e8d1339ab9f7eb25f0cd5aac054b0301f0603551d2304183016801445aff715b0dd786741fee996ebc16547a3931b1e3045060a2b06010401d679020111043730350202012c0201000201000201000420b20e943e3a7544b3a438943b6d5655313a47ef1af34e00ff3261aeb9ed155817040030003000300a06082a8648ce3d040302034700304402206f4609c9ffc946c418cef04c64a0d07bcce78f329b99270b822f2a4d1e3b75330220093c8d18328f36ef157f296393bdc7721dd2bd67438ffeaa42f051a044b7457168617574684461746158a4bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b55d00000000ade9705e1ce7085b899a540d02199bf800200a4729519788b6ed8a2d772b494e186244d8c798c052960dbc8c10c915176795a501020326200121582099169657036d089a2a9821a7d0063d341f1a4613389359636efab5f3cbf1accf225820dd91c55543176ea99b644406dd1dd63774b6af65ac759e06ff40b1c8ab02df6b'

Authentication:

challenge = h'e4ee05ca9dbced74116540f24ed9adc62aae8507560522844ffa7eea14f7af86'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'08', info='android-key.ES256', L=32)

client_data_gen_flags = h'43'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'09', info='android-key.ES256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
extra_client_data = h'ab127107eff182bc3230beb5f1dad29c'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'0a', info='android-key.ES256', L=16)
; auth_data_UV_BS sets the UV and BS bits of the authenticator data flags, but BS is set only if BE was set in the registration
auth_data_UV_BS = h'4a'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'0b', info='android-key.ES256', L=1)

authenticatorData = h'bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b50900000000'
clientDataJSON = h'7b2274797065223a22776562617574686e2e676574222c226368616c6c656e6765223a22354f344679703238375851525a55447954746d74786971756851645742534b45545f702d36685433723459222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73652c22657874726144617461223a22636c69656e74446174614a534f4e206d617920626520657874656e6465642077697468206164646974696f6e616c206669656c647320696e20746865206675747572652c207375636820617320746869733a2071784a78422d5f78677277794d4c3631386472536e413d3d227d'
signature = h'304502202060107d953b286aa1bf35e3e8c78b383fddab5591b2db17ffb23ed83fe7df20022100a99be0297cb0d9d38aa96f30b760a4e0749dab385acd2a51d0560caae570d225'

16.1.13. Apple Anonymous Attestation with ES256 Credential

Registration:

challenge = h'f7f688213852007775009cf8c096fda89d60b9a9fb5a50dd81dd9898af5a0609'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='apple.ES256', L=32)

credential_private_key = h'de987bd9d43eeb44728ce0b14df11209dff931fb56b5b1948de4c0da1144ded0'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='apple.ES256', L=32)
client_data_gen_flags = h'5f'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'02', info='apple.ES256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
extra_client_data = h'4e32cf9e939a5d052b14d71b1f6b5364'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'03', info='apple.ES256', L=16)
aaguid = h'748210a20076616a733b2114336fc384'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'04', info='apple.ES256', L=16)
credential_id = h'9c4a5886af9283d9be3e9ec55978dedfdce2e3b365cab193ae850c16238fafb8'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'05', info='apple.ES256', L=32)
; auth_data_UV_BE_BS determines the UV, BE and BS bits of the authenticator data flags, but BS is set only if BE is
auth_data_UV_BE_BS = h'2a'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'06', info='apple.ES256', L=1)
attestation_cert_serial_number = h'394275613d5310b81a29ce90f48b61c1'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'07', info='apple.ES256', L=16)

clientDataJSON = h'7b2274797065223a22776562617574686e2e637265617465222c226368616c6c656e6765223a22395f61494954685341486431414a7a34774a6239714a316775616e37576c4464676432596d4b396142676b222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73652c22657874726144617461223a22636c69656e74446174614a534f4e206d617920626520657874656e6465642077697468206164646974696f6e616c206669656c647320696e20746865206675747572652c207375636820617320746869733a20546a4c506e704f6158515572464e6362483274545a413d3d227d'
attestationObject = h'a363666d74656170706c656761747453746d74a1637835638159025c30820258308201fea0030201020210394275613d5310b81a29ce90f48b61c1300a06082a8648ce3d0403023062311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331253023060355040b0c1c41757468656e74696361746f72204174746573746174696f6e204341310b30090603550406130241413020170d3234303130313030303030305a180f33303234303130313030303030305a305f311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331223020060355040b0c1941757468656e74696361746f72204174746573746174696f6e310b30090603550406130241413059301306072a8648ce3d020106082a8648ce3d030107034200048a3d5b1b4c543a706bf6e4b00afedb3c930b690dd286934fe2911f779cc7761af728e1aa3b0ff66692192daa776b83ddf8e3340d2d9a0eabdfc324eb3e2f136ca38196308193300c0603551d130101ff04023000300e0603551d0f0101ff040403020780301d0603551d0e0416041412f1ce6c0ae39b403bfc9200317bc183a4e4d766301f0603551d2304183016801445aff715b0dd786741fee996ebc16547a3931b1e303306092a864886f76364080204263024a122042097851a1a98b69c0614b26a94b70ec3aa07c061f89dbee23fbee01b6c42d718b0300a06082a8648ce3d040302034800304502207d541a5553f38b93b78b26a9dca58e64a7f8fac15ca206ae3ea32497cda375fb0221009137c6b75e767ec08224b29a7f703db4b745686dcc8a26b66e793688866d064f68617574684461746158a4bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b54900000000748210a20076616a733b2114336fc38400209c4a5886af9283d9be3e9ec55978dedfdce2e3b365cab193ae850c16238fafb8a50102032620012158208a3d5b1b4c543a706bf6e4b00afedb3c930b690dd286934fe2911f779cc7761a225820f728e1aa3b0ff66692192daa776b83ddf8e3340d2d9a0eabdfc324eb3e2f136c'

Authentication:

challenge = h'd3eb2964641e26fed023403a72dde093b19c4ba9008c3f9dd83fcfd347a66d05'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'08', info='apple.ES256', L=32)

client_data_gen_flags = h'c2'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'09', info='apple.ES256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
; auth_data_UV_BS sets the UV and BS bits of the authenticator data flags, but BS is set only if BE was set in the registration
auth_data_UV_BS = h'e2'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'0a', info='apple.ES256', L=1)

authenticatorData = h'bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b50900000000'
clientDataJSON = h'7b2274797065223a22776562617574686e2e676574222c226368616c6c656e6765223a22302d73705a4751654a76375149304136637433676b37476353366b416a442d6432445f503030656d625155222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73657d'
signature = h'3046022100ee35db795ce28044e1f8231d68b3d79a9882f7415aa35c1b5ac74d24251073c8022100dcc65691650a412d0ceef843710c09827acf26c7845bddac07eec95863e7fc4c'

16.1.14. FIDO U2F Attestation with ES256 Credential

Registration:

challenge = h'e074372990b9caa507a227dfc67b003780c45325380d1a90c20f81ed7d080c06'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'00', info='fido-u2f.ES256', L=32)

credential_private_key = h'51bd002938fa10b83683ac2a2032d0a7338c7f65a90228cfd1f61b81ec7288d0'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'01', info='fido-u2f.ES256', L=32)
client_data_gen_flags = h'00'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'02', info='fido-u2f.ES256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
aaguid = h'afb3c2efc054df425013d5c88e79c3c1'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'03', info='fido-u2f.ES256', L=16)
credential_id = h'a4ba6e2d2cfec43648d7d25c5ed5659bc18f2b781538527ebd492de03256bdf4'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'04', info='fido-u2f.ES256', L=32)
attestation_private_key = h'66fda477a2a99d14c5edd7c1041a297ba5f3375108b1d032b79429f42349ce33'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'05', info='fido-u2f.ES256', L=32)
attestation_cert_serial_number = h'04f66dc6542ea7719dea416d325a2401'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'06', info='fido-u2f.ES256', L=16)

clientDataJSON = h'7b2274797065223a22776562617574686e2e637265617465222c226368616c6c656e6765223a22344851334b5a4335797155486f696666786e73414e344445557955344452715177672d4237583049444159222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73657d'
attestationObject = h'a363666d74686669646f2d7532666761747453746d74a26373696758473045022100f41887a20063bb26867cb9751978accea5b81791a68f4f4dd6ea1fb6a5c086c302204e5e00aa3895777e6608f1f375f95450045da3da57a0e4fd451df35a31d2d98a637835638159022530820221308201c7a003020102021004f66dc6542ea7719dea416d325a2401300a06082a8648ce3d0403023062311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331253023060355040b0c1c41757468656e74696361746f72204174746573746174696f6e204341310b30090603550406130241413020170d3234303130313030303030305a180f33303234303130313030303030305a305f311e301c06035504030c15576562417574686e207465737420766563746f7273310c300a060355040a0c0357334331223020060355040b0c1941757468656e74696361746f72204174746573746174696f6e310b30090603550406130241413059301306072a8648ce3d020106082a8648ce3d0301070342000456fffa7093dede46aefeefb6e520c7ccc78967636e2f92582ba71455f64e93932dff3be4e0d4ef68e3e3b73aa087e26a0a0a30b02dc2aa2309db4c3a2fc936dea360305e300c0603551d130101ff04023000300e0603551d0f0101ff040403020780301d0603551d0e04160414420822eb1908b5cd3911017fbcad4641c05e05a3301f0603551d2304183016801445aff715b0dd786741fee996ebc16547a3931b1e300a06082a8648ce3d040302034800304502200d0b777f0a0b181ad2830275acc3150fd6092430bcd034fd77beb7bdf8c2d546022100d4864edd95daa3927080855df199f1717299b24a5eecefbd017455a9b934d8f668617574684461746158a4bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b54100000000afb3c2efc054df425013d5c88e79c3c10020a4ba6e2d2cfec43648d7d25c5ed5659bc18f2b781538527ebd492de03256bdf4a5010203262001215820b0d62de6b30f86f0bac7a9016951391c2e31849e2e64661cbd2b13cd7d5508ad225820503b0bda2a357a9a4b34475a28e65b660b4898a9e3e9bbf0820d43494297edd0'

Authentication:

challenge = h'f90c612981d84f599438de1a500f76926e92cc84bef8e02c6e23553f00485435'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'07', info='fido-u2f.ES256', L=32)

client_data_gen_flags = h'2c'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'08', info='fido-u2f.ES256', L=1)
; extra_client_data is included iff bit 0x01 of client_data_gen_flags is 1
; auth_data_UV_BS sets the UV and BS bits of the authenticator data flags, but BS is set only if BE was set in the registration
auth_data_UV_BS = h'd1'   ; Derived by: HKDF-SHA-256(IKM='WebAuthn test vectors', salt=h'09', info='fido-u2f.ES256', L=1)

authenticatorData = h'bfabc37432958b063360d3ad6461c9c4735ae7f8edd46592a5e0f01452b2e4b50100000000'
clientDataJSON = h'7b2274797065223a22776562617574686e2e676574222c226368616c6c656e6765223a222d5178684b59485954316d554f4e3461554139326b6d36537a49532d2d4f417362694e5650774249564455222c226f726967696e223a2268747470733a2f2f6578616d706c652e6f7267222c2263726f73734f726967696e223a66616c73657d'
signature = h'304402206172459958fea907b7292b92f555034bfd884895f287a76200c1ba287239137002204727b166147e26a21bbc2921d192ebfed569b79438538e5c128b5e28e6926dd7'

16.2. Test Vectors for WebAuthn Extensions

This section lists example values for WebAuthn extensions.

16.2.1. Pseudo-random function extension (prf)

This section lists example values for the pseudo-random function (prf) extension.

Because the prf extension integrates with the CTAP2 hmac-secret extension [FIDO-CTAP], the examples are divided into two sections: example inputs and outputs for the WebAuthn prf extension, relevant to WebAuthn Clients and WebAuthn Relying Parties; and example mappings between the WebAuthn prf extension and the CTAP2 hmac-secret extension, relevant to WebAuthn Clients and WebAuthn Authenticator.

16.2.1.1. Web Authentication API

The following examples may be used to test WebAuthn Client implementations of and WebAuthn Relying Party usage of the prf extension. The examples are not exhaustive.

Pseudo-random values used in this section were generated as follows:

16.2.1.2. CTAP2 hmac-secret extension

The following examples may be used to test WebAuthn Client implementations of how the prf extension uses the [FIDO-CTAP] hmac-secret extension. The examples are given in CDDL [RFC8610] notation. The examples are not exhaustive.

Inputs and pseudo-random values used in this section were generated as follows:

17. Acknowledgements

We thank the following people for their reviews of, and contributions to, this specification: Yuriy Ackermann, James Barclay, Richard Barnes, Dominic Battré, Julien Cayzac, Domenic Denicola, Rahul Ghosh, Brad Hill, Nidhi Jaju, Jing Jin, Wally Jones, Ian Kilpatrick, Axel Nennker, Zack Newman, Yoshikazu Nojima, Kimberly Paulhamus, Adam Powers, Yaron Sheffer, Anne van Kesteren, Johan Verrept, and Boris Zbarsky.

Thanks to Adam Powers for creating the overall registration and authentication flow diagrams (Figure 1 and Figure 2).

We thank Anthony Nadalin, John Fontana, and Richard Barnes for their contributions as co-chairs of the Web Authentication Working Group.

We also thank Simone Onofri, Philippe Le Hégaret, Wendy Seltzer, Samuel Weiler, and Harry Halpin for their contributions as our W3C Team Contacts.

18. Revision History

This section is not normative.

This section contains the substantive changes that have been made to this specification over time.

18.1. Changes since Web Authentication Level 2 [webauthn-2-20210408]

18.1.1. Substantive Changes

The following changes were made to the Web Authentication API and the way it operates.

Changes:

Deprecations:

New features:

18.1.2. Editorial Changes

The following changes were made to improve clarity, readability, navigability and similar aspects of the document.

Index

Terms defined by this specification

Terms defined by reference

References

Normative References

[CREDENTIAL-MANAGEMENT-1]
Nina Satragno; Marcos Caceres. Credential Management Level 1. URL: https://w3c.github.io/webappsec-credential-management/
[CSP2]
Mike West; Adam Barth; Daniel Veditz. Content Security Policy Level 2. URL: https://w3c.github.io/webappsec-csp/
[CSS21]
Bert Bos; et al. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. URL: https://drafts.csswg.org/css2/
[DOM4]
Anne van Kesteren. DOM Standard. Living Standard. URL: https://dom.spec.whatwg.org/
[ECMAScript]
ECMAScript Language Specification. URL: https://tc39.es/ecma262/multipage/
[ENCODING]
Anne van Kesteren. Encoding Standard. Living Standard. URL: https://encoding.spec.whatwg.org/
[FETCH]
Anne van Kesteren. Fetch Standard. Living Standard. URL: https://fetch.spec.whatwg.org/
[FIDO-APPID]
D. Balfanz; et al. FIDO AppID and Facet Specification. 27 February 2018. FIDO Alliance Implementation Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-appid-and-facets-v2.0-id-20180227.html
[FIDO-CTAP]
J. Bradley; et al. Client to Authenticator Protocol (CTAP). June 21, 2022. FIDO Alliance Proposed Standard. URL: https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
[FIDO-Privacy-Principles]
FIDO Alliance. FIDO Privacy Principles. FIDO Alliance Whitepaper. URL: https://fidoalliance.org/wp-content/uploads/2014/12/FIDO_Alliance_Whitepaper_Privacy_Principles.pdf
[FIDO-Registry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. 17 December 2019. FIDO Alliance Proposed Standard. URL: https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
[FIDO-U2F-Message-Formats]
D. Balfanz; J. Ehrensvard; J. Lang. FIDO U2F Raw Message Formats. FIDO Alliance Implementation Draft. URL: https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-raw-message-formats-v1.1-id-20160915.html
[FIDO-V2.1]
Client to Authenticator Protocol (CTAP). Editor's Draft. URL: https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
[HTML]
Anne van Kesteren; et al. HTML Standard. Living Standard. URL: https://html.spec.whatwg.org/multipage/
[I18N-GLOSSARY]
Richard Ishida; Addison Phillips. Internationalization Glossary. URL: https://w3c.github.io/i18n-glossary/
[IANA-COSE-ALGS-REG]
IANA CBOR Object Signing and Encryption (COSE) Algorithms Registry. URL: https://www.iana.org/assignments/cose/cose.xhtml#algorithms
[IANA-WebAuthn-Registries]
IANA. Web Authentication (WebAuthn) registries. URL: https://www.iana.org/assignments/webauthn/
[INFRA]
Anne van Kesteren; Domenic Denicola. Infra Standard. Living Standard. URL: https://infra.spec.whatwg.org/
[Permissions-Policy]
Ian Clelland. Permissions Policy. URL: https://w3c.github.io/webappsec-permissions-policy/
[PRIVATE-AGGREGATION-API]
Private Aggregation API. Unofficial Proposal Draft. URL: https://patcg-individual-drafts.github.io/private-aggregation-api/
[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL: https://datatracker.ietf.org/doc/html/rfc2119
[RFC3986]
T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax. January 2005. Internet Standard. URL: https://www.rfc-editor.org/rfc/rfc3986
[RFC4648]
S. Josefsson. The Base16, Base32, and Base64 Data Encodings. October 2006. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc4648
[RFC4949]
R. Shirey. Internet Security Glossary, Version 2. August 2007. Informational. URL: https://www.rfc-editor.org/rfc/rfc4949
[RFC5234]
D. Crocker, Ed.; P. Overell. Augmented BNF for Syntax Specifications: ABNF. January 2008. Internet Standard. URL: https://www.rfc-editor.org/rfc/rfc5234
[RFC5280]
D. Cooper; et al. Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. May 2008. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc5280
[RFC5890]
J. Klensin. Internationalized Domain Names for Applications (IDNA): Definitions and Document Framework. August 2010. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc5890
[RFC6454]
A. Barth. The Web Origin Concept. December 2011. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc6454
[RFC7515]
M. Jones; J. Bradley; N. Sakimura. JSON Web Signature (JWS). May 2015. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc7515
[RFC8152]
J. Schaad. CBOR Object Signing and Encryption (COSE). July 2017. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc8152
[RFC8174]
B. Leiba. Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. May 2017. Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc8174
[RFC8230]
M. Jones. Using RSA Algorithms with CBOR Object Signing and Encryption (COSE) Messages. September 2017. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc8230
[RFC8264]
P. Saint-Andre; M. Blanchet. PRECIS Framework: Preparation, Enforcement, and Comparison of Internationalized Strings in Application Protocols. October 2017. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc8264
[RFC8265]
P. Saint-Andre; A. Melnikov. Preparation, Enforcement, and Comparison of Internationalized Strings Representing Usernames and Passwords. October 2017. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc8265
[RFC8266]
P. Saint-Andre. Preparation, Enforcement, and Comparison of Internationalized Strings Representing Nicknames. October 2017. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc8266
[RFC8610]
H. Birkholz; C. Vigano; C. Bormann. Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures. June 2019. IETF Proposed Standard. URL: https://tools.ietf.org/html/rfc8610
[RFC8615]
M. Nottingham. Well-Known Uniform Resource Identifiers (URIs). May 2019. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc8615
[RFC8809]
Jeff Hodges; Giridhar Mandyam; Michael B. Jones. Registries for Web Authentication (WebAuthn). August 2020. IETF Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc8809
[RFC8949]
C. Bormann; P. Hoffman. Concise Binary Object Representation (CBOR). December 2020. Internet Standard. URL: https://www.rfc-editor.org/rfc/rfc8949
[RFC9052]
J. Schaad. CBOR Object Signing and Encryption (COSE): Structures and Process. August 2022. Internet Standard. URL: https://www.rfc-editor.org/rfc/rfc9052
[RFC9053]
J. Schaad. CBOR Object Signing and Encryption (COSE): Initial Algorithms. August 2022. Informational. URL: https://www.rfc-editor.org/rfc/rfc9053
[SEC1]
SEC1: Elliptic Curve Cryptography, Version 2.0. URL: http://www.secg.org/sec1-v2.pdf
[SP800-800-63r3]
Paul A. Grassi; Michael E. Garcia; James L. Fenton. NIST Special Publication 800-63: Digital Identity Guidelines. June 2017. URL: https://pages.nist.gov/800-63-3/sp800-63-3.html
[TCG-CMCProfile-AIKCertEnroll]
Scott Kelly; et al. TCG Infrastructure Working Group: A CMC Profile for AIK Certificate Enrollment. 24 March 2011. Published. URL: https://trustedcomputinggroup.org/wp-content/uploads/IWG_CMC_Profile_Cert_Enrollment_v1_r7.pdf
[TokenBinding]
A. Popov; et al. The Token Binding Protocol Version 1.0. October, 2018. IETF Proposed Standard. URL: https://tools.ietf.org/html/rfc8471
[TPMv2-EK-Profile]
TCG EK Credential Profile for TPM Family 2.0. URL: https://trustedcomputinggroup.org/wp-content/uploads/TCG-EK-Credential-Profile-V-2.5-R2_published.pdf
[TPMv2-Part1]
Trusted Platform Module Library, Part 1: Architecture. URL: https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
[TPMv2-Part2]
Trusted Platform Module Library, Part 2: Structures. URL: https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf
[TPMv2-Part3]
Trusted Platform Module Library, Part 3: Commands. URL: https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
[URL]
Anne van Kesteren. URL Standard. Living Standard. URL: https://url.spec.whatwg.org/
[WCAG21]
Michael Cooper; et al. Web Content Accessibility Guidelines (WCAG) 2.1. URL: https://w3c.github.io/wcag/guidelines/
[WEBAUTHN-2-20210408]
Jeff Hodges; et al. Web Authentication: An API for accessing Public Key Credentials - Level 2. URL: https://www.w3.org/TR/2021/REC-webauthn-2-20210408/
[WEBAUTHN-3]
Michael Jones; Akshay Kumar; Emil Lundberg. Web Authentication: An API for accessing Public Key Credentials - Level 3. URL: https://w3c.github.io/webauthn/
[WebDriver]
Simon Stewart; David Burns. WebDriver. URL: https://w3c.github.io/webdriver/
[WEBDRIVER2]
Simon Stewart; David Burns. WebDriver. URL: https://w3c.github.io/webdriver/
[WebIDL]
Edgar Chen; Timothy Gu. Web IDL Standard. Living Standard. URL: https://webidl.spec.whatwg.org/

Informative References

[Ceremony]
Carl Ellison. Ceremony Design and Analysis. 2007. URL: https://eprint.iacr.org/2007/399.pdf
[CSS-OVERFLOW-3]
Elika Etemad; Florian Rivoal. CSS Overflow Module Level 3. URL: https://drafts.csswg.org/css-overflow-3/
[EduPersonObjectClassSpec]
EduPerson. ongoing. URL: https://refeds.org/eduperson
[FIDO-Transports-Ext]
FIDO Alliance. FIDO U2F Authenticator Transports Extension. FIDO Alliance Proposed Standard. URL: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-authenticator-transports-extension-v1.2-ps-20170411.html
[FIDO-UAF-AUTHNR-CMDS]
R. Lindemann; J. Kemp. FIDO UAF Authenticator Commands. FIDO Alliance Implementation Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-authnr-cmds-v1.1-id-20170202.html
[FIDOAuthnrSecReqs]
D. Biggs; et al. FIDO Authenticator Security Requirements. FIDO Alliance Final Documents. URL: https://fidoalliance.org/specs/fido-security-requirements-v1.0-fd-20170524/
[FIDOMetadataService]
R. Lindemann; B. Hill; D. Baghdasaryan. FIDO Metadata Service. 27 February 2018. FIDO Alliance Implementation Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
[FIDOSecRef]
R. Lindemann; et al. FIDO Security Reference. 27 February 2018. FIDO Alliance Implementation Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
[FIDOU2FJavaScriptAPI]
D. Balfanz; A. Birgisson; J. Lang. FIDO U2F JavaScript API. FIDO Alliance Proposed Standard. URL: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-javascript-api-v1.2-ps-20170411.html
[ISOBiometricVocabulary]
ISO/IEC JTC1/SC37. Information technology — Vocabulary — Biometrics. 15 December 2012. International Standard: ISO/IEC 2382-37:2012(E) First Edition. URL: http://standards.iso.org/ittf/PubliclyAvailableStandards/c055194_ISOIEC_2382-37_2012.zip
[RFC3279]
L. Bassham; W. Polk; R. Housley. Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. April 2002. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc3279
[RFC5869]
H. Krawczyk; P. Eronen. HMAC-based Extract-and-Expand Key Derivation Function (HKDF). May 2010. Informational. URL: https://www.rfc-editor.org/rfc/rfc5869
[RFC5958]
S. Turner. Asymmetric Key Packages. August 2010. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc5958
[RFC6265]
A. Barth. HTTP State Management Mechanism. April 2011. Proposed Standard. URL: https://httpwg.org/specs/rfc6265.html
[RFC6979]
T. Pornin. Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA). August 2013. Informational. URL: https://www.rfc-editor.org/rfc/rfc6979
[RFC8017]
K. Moriarty, Ed.; et al. PKCS #1: RSA Cryptography Specifications Version 2.2. November 2016. Informational. URL: https://www.rfc-editor.org/rfc/rfc8017
[UAFProtocol]
R. Lindemann; et al. FIDO UAF Protocol Specification v1.0. FIDO Alliance Proposed Standard. URL: https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html
[UAX29]
UNICODE Text Segmentation. URL: http://www.unicode.org/reports/tr29/
[WebAuthn-1]
Dirk Balfanz; et al. Web Authentication:An API for accessing Public Key Credentials Level 1. URL: https://w3c.github.io/webauthn/
[WebAuthnAPIGuide]
Web Authentication API Guide. Experimental. URL: https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API

IDL Index

[SecureContext, Exposed=Window]
interface PublicKeyCredential : Credential {
    [SameObject] readonly attribute ArrayBuffer              rawId;
    [SameObject] readonly attribute AuthenticatorResponse    response;
    readonly attribute DOMString?                            authenticatorAttachment;
    AuthenticationExtensionsClientOutputs getClientExtensionResults();
    static Promise<boolean> isConditionalMediationAvailable();
    PublicKeyCredentialJSON toJSON();
};

typedef DOMString Base64URLString;
// The structure of this object will be either
// RegistrationResponseJSON or AuthenticationResponseJSON
typedef object PublicKeyCredentialJSON;

dictionary RegistrationResponseJSON {
    required DOMString id;
    required Base64URLString rawId;
    required AuthenticatorAttestationResponseJSON response;
    DOMString authenticatorAttachment;
    required AuthenticationExtensionsClientOutputsJSON clientExtensionResults;
    required DOMString type;
};

dictionary AuthenticatorAttestationResponseJSON {
    required Base64URLString clientDataJSON;
    required Base64URLString authenticatorData;
    required sequence<DOMString> transports;
    // The publicKey field will be missing if pubKeyCredParams was used to
    // negotiate a public-key algorithm that the user agent doesn't
    // understand. (See section “Easily accessing credential data” for a
    // list of which algorithms user agents must support.) If using such an
    // algorithm then the public key must be parsed directly from
    // attestationObject or authenticatorData.
    Base64URLString publicKey;
    required COSEAlgorithmIdentifier publicKeyAlgorithm;
    // This value contains copies of some of the fields above. See
    // section “Easily accessing credential data”.
    required Base64URLString attestationObject;
};

dictionary AuthenticationResponseJSON {
    required DOMString id;
    required Base64URLString rawId;
    required AuthenticatorAssertionResponseJSON response;
    DOMString authenticatorAttachment;
    required AuthenticationExtensionsClientOutputsJSON clientExtensionResults;
    required DOMString type;
};

dictionary AuthenticatorAssertionResponseJSON {
    required Base64URLString clientDataJSON;
    required Base64URLString authenticatorData;
    required Base64URLString signature;
    Base64URLString userHandle;
};

dictionary AuthenticationExtensionsClientOutputsJSON {
};

partial dictionary CredentialCreationOptions {
    PublicKeyCredentialCreationOptions      publicKey;
};

partial dictionary CredentialRequestOptions {
    PublicKeyCredentialRequestOptions      publicKey;
};

partial interface PublicKeyCredential {
    static Promise<boolean> isUserVerifyingPlatformAuthenticatorAvailable();
};

partial interface PublicKeyCredential {
    static Promise<PublicKeyCredentialClientCapabilities> getClientCapabilities();
};

typedef record<DOMString, boolean> PublicKeyCredentialClientCapabilities;

partial interface PublicKeyCredential {
    static PublicKeyCredentialCreationOptions parseCreationOptionsFromJSON(PublicKeyCredentialCreationOptionsJSON options);
};

dictionary PublicKeyCredentialCreationOptionsJSON {
    required PublicKeyCredentialRpEntity                    rp;
    required PublicKeyCredentialUserEntityJSON              user;
    required Base64URLString                                challenge;
    required sequence<PublicKeyCredentialParameters>        pubKeyCredParams;
    unsigned long                                           timeout;
    sequence<PublicKeyCredentialDescriptorJSON>             excludeCredentials = [];
    AuthenticatorSelectionCriteria                          authenticatorSelection;
    sequence<DOMString>                                     hints = [];
    DOMString                                               attestation = "none";
    sequence<DOMString>                                     attestationFormats = [];
    AuthenticationExtensionsClientInputsJSON                extensions;
};

dictionary PublicKeyCredentialUserEntityJSON {
    required Base64URLString        id;
    required DOMString              name;
    required DOMString              displayName;
};

dictionary PublicKeyCredentialDescriptorJSON {
    required DOMString              type;
    required Base64URLString        id;
    sequence<DOMString>             transports;
};

dictionary AuthenticationExtensionsClientInputsJSON {
};

partial interface PublicKeyCredential {
    static PublicKeyCredentialRequestOptions parseRequestOptionsFromJSON(PublicKeyCredentialRequestOptionsJSON options);
};

dictionary PublicKeyCredentialRequestOptionsJSON {
    required Base64URLString                                challenge;
    unsigned long                                           timeout;
    DOMString                                               rpId;
    sequence<PublicKeyCredentialDescriptorJSON>             allowCredentials = [];
    DOMString                                               userVerification = "preferred";
    sequence<DOMString>                                     hints = [];
    AuthenticationExtensionsClientInputsJSON                extensions;
};

partial interface PublicKeyCredential {
    static Promise<undefined> signalUnknownCredential(UnknownCredentialOptions options);
    static Promise<undefined> signalAllAcceptedCredentials(AllAcceptedCredentialsOptions options);
    static Promise<undefined> signalCurrentUserDetails(CurrentUserDetailsOptions options);
};

dictionary UnknownCredentialOptions {
    required DOMString                     rpId;
    required Base64URLString               credentialId;
};

dictionary AllAcceptedCredentialsOptions {
    required DOMString                     rpId;
    required Base64URLString               userId;
    required sequence<Base64URLString>     allAcceptedCredentialIds;
};

dictionary CurrentUserDetailsOptions {
    required DOMString                     rpId;
    required Base64URLString               userId;
    required DOMString                     name;
    required DOMString                     displayName;
};

[SecureContext, Exposed=Window]
interface AuthenticatorResponse {
    [SameObject] readonly attribute ArrayBuffer      clientDataJSON;
};

[SecureContext, Exposed=Window]
interface AuthenticatorAttestationResponse : AuthenticatorResponse {
    [SameObject] readonly attribute ArrayBuffer      attestationObject;
    sequence<DOMString>                              getTransports();
    ArrayBuffer                                      getAuthenticatorData();
    ArrayBuffer?                                     getPublicKey();
    COSEAlgorithmIdentifier                          getPublicKeyAlgorithm();
};

[SecureContext, Exposed=Window]
interface AuthenticatorAssertionResponse : AuthenticatorResponse {
    [SameObject] readonly attribute ArrayBuffer      authenticatorData;
    [SameObject] readonly attribute ArrayBuffer      signature;
    [SameObject] readonly attribute ArrayBuffer?     userHandle;
};

dictionary PublicKeyCredentialParameters {
    required DOMString                    type;
    required COSEAlgorithmIdentifier      alg;
};

dictionary PublicKeyCredentialCreationOptions {
    required PublicKeyCredentialRpEntity         rp;
    required PublicKeyCredentialUserEntity       user;

    required BufferSource                             challenge;
    required sequence<PublicKeyCredentialParameters>  pubKeyCredParams;

    unsigned long                                timeout;
    sequence<PublicKeyCredentialDescriptor>      excludeCredentials = [];
    AuthenticatorSelectionCriteria               authenticatorSelection;
    sequence<DOMString>                          hints = [];
    DOMString                                    attestation = "none";
    sequence<DOMString>                          attestationFormats = [];
    AuthenticationExtensionsClientInputs         extensions;
};

dictionary PublicKeyCredentialEntity {
    required DOMString    name;
};

dictionary PublicKeyCredentialRpEntity : PublicKeyCredentialEntity {
    DOMString      id;
};

dictionary PublicKeyCredentialUserEntity : PublicKeyCredentialEntity {
    required BufferSource   id;
    required DOMString      displayName;
};

dictionary AuthenticatorSelectionCriteria {
    DOMString                    authenticatorAttachment;
    DOMString                    residentKey;
    boolean                      requireResidentKey = false;
    DOMString                    userVerification = "preferred";
};

enum AuthenticatorAttachment {
    "platform",
    "cross-platform"
};

enum ResidentKeyRequirement {
    "discouraged",
    "preferred",
    "required"
};

enum AttestationConveyancePreference {
    "none",
    "indirect",
    "direct",
    "enterprise"
};

dictionary PublicKeyCredentialRequestOptions {
    required BufferSource                challenge;
    unsigned long                        timeout;
    DOMString                            rpId;
    sequence<PublicKeyCredentialDescriptor> allowCredentials = [];
    DOMString                            userVerification = "preferred";
    sequence<DOMString>                  hints = [];
    AuthenticationExtensionsClientInputs extensions;
};

dictionary AuthenticationExtensionsClientInputs {
};

dictionary AuthenticationExtensionsClientOutputs {
};

dictionary CollectedClientData {
    required DOMString           type;
    required DOMString           challenge;
    required DOMString           origin;
    boolean                      crossOrigin;
    DOMString                    topOrigin;
};

dictionary TokenBinding {
    required DOMString status;
    DOMString id;
};

enum TokenBindingStatus { "present", "supported" };

enum PublicKeyCredentialType {
    "public-key"
};

dictionary PublicKeyCredentialDescriptor {
    required DOMString                    type;
    required BufferSource                 id;
    sequence<DOMString>                   transports;
};

enum AuthenticatorTransport {
    "usb",
    "nfc",
    "ble",
    "smart-card",
    "hybrid",
    "internal"
};

typedef long COSEAlgorithmIdentifier;

enum UserVerificationRequirement {
    "required",
    "preferred",
    "discouraged"
};

enum ClientCapability {
    "conditionalCreate",
    "conditionalGet",
    "hybridTransport",
    "passkeyPlatformAuthenticator",
    "userVerifyingPlatformAuthenticator",
    "relatedOrigins",
    "signalAllAcceptedCredentials",
    "signalCurrentUserDetails",
    "signalUnknownCredential"
};

enum PublicKeyCredentialHint {
    "security-key",
    "client-device",
    "hybrid",
};

partial dictionary AuthenticationExtensionsClientInputs {
  DOMString appid;
};

partial dictionary AuthenticationExtensionsClientOutputs {
  boolean appid;
};

partial dictionary AuthenticationExtensionsClientInputs {
  DOMString appidExclude;
};

partial dictionary AuthenticationExtensionsClientOutputs {
  boolean appidExclude;
};

partial dictionary AuthenticationExtensionsClientInputs {
    boolean credProps;
};

dictionary CredentialPropertiesOutput {
    boolean rk;
};

partial dictionary AuthenticationExtensionsClientOutputs {
    CredentialPropertiesOutput credProps;
};

dictionary AuthenticationExtensionsPRFValues {
    required BufferSource first;
    BufferSource second;
};

dictionary AuthenticationExtensionsPRFInputs {
    AuthenticationExtensionsPRFValues eval;
    record<DOMString, AuthenticationExtensionsPRFValues> evalByCredential;
};

partial dictionary AuthenticationExtensionsClientInputs {
    AuthenticationExtensionsPRFInputs prf;
};

dictionary AuthenticationExtensionsPRFOutputs {
    boolean enabled;
    AuthenticationExtensionsPRFValues results;
};

partial dictionary AuthenticationExtensionsClientOutputs {
    AuthenticationExtensionsPRFOutputs prf;
};

partial dictionary AuthenticationExtensionsClientInputs {
    AuthenticationExtensionsLargeBlobInputs largeBlob;
};

enum LargeBlobSupport {
  "required",
  "preferred",
};

dictionary AuthenticationExtensionsLargeBlobInputs {
    DOMString support;
    boolean read;
    BufferSource write;
};

partial dictionary AuthenticationExtensionsClientOutputs {
    AuthenticationExtensionsLargeBlobOutputs largeBlob;
};

dictionary AuthenticationExtensionsLargeBlobOutputs {
    boolean supported;
    ArrayBuffer blob;
    boolean written;
};

MDN

AuthenticatorAssertionResponse/authenticatorData

In all current engines.

Firefox60+Safari13+Chrome67+
Opera?Edge79+
Edge (Legacy)18IENone
Firefox for Android92+iOS Safari?Chrome for Android70+Android WebViewNoneSamsung Internet?Opera Mobile48+
MDN

AuthenticatorAssertionResponse/signature

In all current engines.

Firefox60+Safari13+Chrome67+
Opera?Edge79+
Edge (Legacy)18IENone
Firefox for Android92+iOS Safari?Chrome for Android70+Android WebViewNoneSamsung Internet?Opera Mobile48+
MDN

AuthenticatorAssertionResponse/userHandle

In all current engines.

Firefox60+Safari13+Chrome67+
Opera?Edge79+
Edge (Legacy)18IENone
Firefox for Android92+iOS Safari?Chrome for Android70+Android WebViewNoneSamsung Internet?Opera Mobile48+
MDN

AuthenticatorAssertionResponse

In all current engines.

Firefox60+Safari13+Chrome67+
Opera?Edge79+
Edge (Legacy)18IENone
Firefox for Android92+iOS Safari?Chrome for Android70+Android WebViewNoneSamsung Internet?Opera Mobile48+
MDN

AuthenticatorAttestationResponse/attestationObject

In all current engines.

Firefox60+Safari13+Chrome67+
Opera?Edge79+
Edge (Legacy)18IENone
Firefox for Android92+iOS Safari?Chrome for Android70+Android WebViewNoneSamsung Internet?Opera Mobile48+
MDN

AuthenticatorAttestationResponse/getTransports

FirefoxNoneSafari16+Chrome74+
Opera?Edge79+
Edge (Legacy)?IENone
Firefox for Android?iOS Safari?Chrome for Android?Android WebViewNoneSamsung Internet?Opera Mobile?
MDN

AuthenticatorAttestationResponse

In all current engines.

Firefox60+Safari13+Chrome67+
Opera?Edge79+
Edge (Legacy)18IENone
Firefox for Android92+iOS Safari?Chrome for Android70+Android WebViewNoneSamsung Internet?Opera Mobile48+
MDN

AuthenticatorResponse/clientDataJSON

In all current engines.

Firefox60+Safari13+Chrome67+
Opera?Edge79+
Edge (Legacy)18IENone
Firefox for Android92+iOS Safari?Chrome for Android70+Android WebViewNoneSamsung Internet?Opera Mobile48+
MDN

AuthenticatorResponse

In all current engines.

Firefox60+Safari13+Chrome67+
Opera?Edge79+
Edge (Legacy)18IENone
Firefox for Android92+iOS Safari?Chrome for Android70+Android WebViewNoneSamsung Internet?Opera Mobile48+
MDN

PublicKeyCredential/getClientExtensionResults

In all current engines.

Firefox60+Safari13+Chrome67+
Opera?Edge79+
Edge (Legacy)18IENone
Firefox for Android92+iOS Safari?Chrome for Android70+Android WebViewNoneSamsung Internet?Opera Mobile?
MDN

PublicKeyCredential/isUserVerifyingPlatformAuthenticatorAvailable_static

In all current engines.

Firefox60+Safari13+Chrome67+
Opera?Edge79+
Edge (Legacy)18IENone
Firefox for Android92+iOS Safari?Chrome for Android70+Android WebViewNoneSamsung Internet?Opera Mobile?
MDN

PublicKeyCredential/rawId

In all current engines.

Firefox60+Safari13+Chrome67+
Opera?Edge79+
Edge (Legacy)18IENone
Firefox for Android92+iOS Safari?Chrome for Android70+Android WebViewNoneSamsung Internet?Opera Mobile?
MDN

PublicKeyCredential/response

In all current engines.

Firefox60+Safari13+Chrome67+
Opera?Edge79+
Edge (Legacy)18IENone
Firefox for Android92+iOS Safari?Chrome for Android70+Android WebViewNoneSamsung Internet?Opera Mobile?
MDN

PublicKeyCredential

In all current engines.

Firefox60+Safari13+Chrome67+
Opera?Edge79+
Edge (Legacy)18IENone
Firefox for Android92+iOS Safari?Chrome for Android70+Android WebViewNoneSamsung Internet?Opera Mobile?
MDN

Headers/Feature-Policy/publickey-credentials-get

In only one current engine.

FirefoxNoneSafariNoneChrome84+
OperaNoneEdge84+
Edge (Legacy)?IENone
Firefox for Android?iOS Safari?Chrome for Android?Android WebView?Samsung Internet?Opera MobileNone

Headers/Permissions-Policy/publickey-credentials-create

In only one current engine.

FirefoxNoneSafariNoneChrome88+
OperaNoneEdge88+
Edge (Legacy)?IENone
Firefox for Android?iOS Safari?Chrome for Android?Android WebView?Samsung Internet?Opera MobileNone

Headers/Permissions-Policy/publickey-credentials-get

In only one current engine.

FirefoxNoneSafariNoneChrome88+
OperaNoneEdge88+
Edge (Legacy)?IENone
Firefox for Android?iOS Safari?Chrome for Android?Android WebView?Samsung Internet?Opera MobileNone