

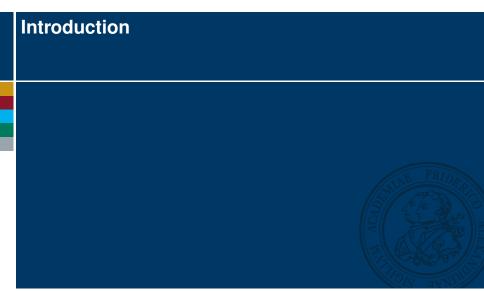
Standard Behavior Descriptions for the Web of Things

Victor Charpenay Chair of Technical Information Systems, Friedrich-Alexander University of Erlangen-Nuremberg 05.06.2019

Outline

Introduction

Describing the Behavior of Things


Challenge: Web of Things Scripts as Behavior Descriptions Motivation Main Issues

Existing Technologies

High-Level Taxonomy Risks & Opportunities

Roadmap & Conclusion

Introduction

This presentation is about extending the "Behavior" building block of W3C WoT.

Figure: Building blocks of a WoT runtime (*Source: W3C*)

"the behavior aspect of a Thing includes both lifecycle management (...) but also the **operational behavior** of the Thing."

Source: https://www.w3.org/TR/wot-architecture/

Describing the Behavior of Things

Web Mash-ups at an Industrial Scale

Problem

WoT building blocks allow for **application mash-ups** driven by interactions between Things. How to scale up from a handful of Things to **complex industrial systems** with 1,000+ Things?

Approach

Interaction cycles (\sim processes) can be described with **WoT scripts**.

Web Mash-ups at an Industrial Scale

Problem

WoT building blocks allow for **application mash-ups** driven by interactions between Things. How to scale up from a handful of Things to **complex industrial systems** with 1,000+ Things?

Approach

Interaction cycles (\sim processes) can be described with **WoT scripts**.

Example

Implementation of a thermostat with a temperature sensor and a furnace

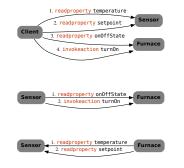
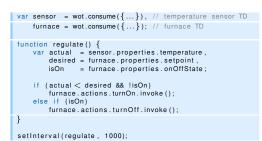



Figure: Alternative sequences of interactions among elements of a thermostat system; interactions are either mediated (top) or peer-to-peer (middle & bottom)

For Reusability

Similar to a Node-RED node or an npm package

For Scalability

- Automatic (re)deployment of an application onto a WoT runtime
- Simulation of the internal behavior of a system in a so-called Digital Twin
- Interaction replay in case of failure or liability testing as required in some industries

- For Reusability
 - Similar to a Node-RED node or an npm package
- For Scalability
 - · Automatic (re)deployment of an application onto a WoT runtime
 - Simulation of the internal behavior of a system in a so-called Digital Twin
 - Interaction replay in case of failure or liability testing as required in some industries

- For Reusability
 - Similar to a Node-RED node or an npm package
- For Scalability
 - Automatic (re)deployment of an application onto a WoT runtime
 - Simulation of the internal behavior of a system in a so-called Digital Twin
 - Interaction replay in case of failure or liability testing as required in some industries

- For Reusability
 - Similar to a Node-RED node or an npm package
- For Scalability
 - Automatic (re)deployment of an application onto a WoT runtime
 - Simulation of the internal behavior of a system in a so-called Digital Twin
 - Interaction replay in case of failure or liability testing as required in some industries

- For Reusability
 - Similar to a Node-RED node or an npm package
- For Scalability
 - Automatic (re)deployment of an application onto a WoT runtime
 - Simulation of the internal behavior of a system in a so-called Digital Twin
 - Interaction replay in case of failure or liability testing as required in some industries

Main Issues

Deployment-specific requirements included in scripts should be parameterized.

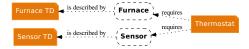


Figure: Script requirements for a thermostat

Parameters to add to the WoT API

- Input requirements: TD templates or shapes or frames
- Contextualization: semantic relation between Things

Main Issues

Deployment-specific requirements included in scripts should be parameterized.

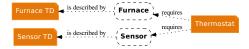


Figure: Script requirements for a thermostat

Parameters to add to the WoT API

- Input requirements: TD templates or shapes or frames
- Contextualization: semantic relation between Things

Main Issues

Deployment-specific requirements included in scripts should be parameterized.

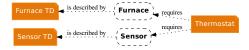
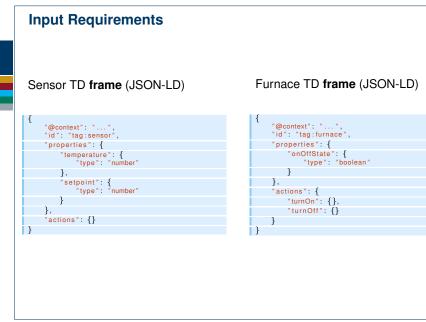
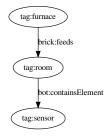



Figure: Script requirements for a thermostat

Parameters to add to the WoT API


- · Input requirements: TD templates or shapes or frames
- · Contextualization: semantic relation between Things

Contextualization

Context frame (JSON-LD)

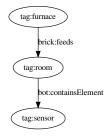


Figure: Ontological expression giving the necessary relation between the temperature sensor and the furnace for a thermostat system

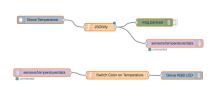
ightarrow Can be merged with sensor and furnace TDs in a single frame

Contextualization

Context frame (JSON-LD)

Figure: Ontological expression giving the necessary relation between the temperature sensor and the furnace for a thermostat system

 \rightarrow Can be merged with sensor and furnace TDs in a single frame



Existing Technologies

WoT-compatible Development Environments

Node-RFD

Figure: Temperature measurement and light control with Node-RED nodes and flows (*Source: Intel software*)

Eclipse 4diac (IEC 61499)

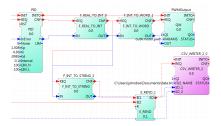


Figure: Motor control and monitoring with 4diac function blocks (*Source: Eclipse*)

A W3C standard to describe behavior should support all paradigms, which can be (roughly) divided in four categories.

Process-oriented

- State-transition machines
- Business process modeling

Numeric

• Transfer functions (e.g. PID)

Rule-based & knowledge-based

- Horn logic (rules)
- Belief-desire-intention model
- Condition-action rules

- Bayesian inference
- Neural networks

A W3C standard to describe behavior should support all paradigms, which can be (roughly) divided in four categories.

- Process-oriented
 - State-transition machines
 - Business process modeling
- Numeric
 - Transfer functions (e.g. PID)
- Rule-based & knowledge-based
 - Horn logic (rules)
 - Belief-desire-intention model
 - Condition-action rules

- Bayesian inference
- Neural networks

A W3C standard to describe behavior should support all paradigms, which can be (roughly) divided in four categories.

- Process-oriented
 - State-transition machines
 - Business process modeling
- Numeric
 - Transfer functions (e.g. PID)
- Rule-based & knowledge-based
 - Horn logic (rules)
 - Belief-desire-intention model
 - Condition-action rules

- Bayesian inference
- Neural networks

A W3C standard to describe behavior should support all paradigms, which can be (roughly) divided in four categories.

- Process-oriented
 - State-transition machines
 - Business process modeling
- Numeric
 - Transfer functions (e.g. PID)
- Rule-based & knowledge-based
 - Horn logic (rules)
 - Belief-desire-intention model
 - Condition-action rules

- Bayesian inference
- Neural networks

- Process-oriented
 - State-transition machines
 - Business process modeling
- Numeric
 - Transfer functions (e.g. PID)
- Rule-based & knowledge-based
 - Horn logic (rules)
 - Belief-desire-intention model
 - Condition-action rules
- Statistical
 - Bayesian inference
 - Neural networks

- Process-oriented
 - State-transition machines
 - Business process modeling
- Numeric
 - Transfer functions (e.g. PID)
- Rule-based & knowledge-based
 - Horn logic (rules)
 - Belief-desire-intention model
 - Condition-action rules
- Statistical
 - Bayesian inference
 - Neural networks

- Process-oriented
 - State-transition machines
 - Business process modeling
- Numeric
 - Transfer functions (e.g. PID)
- Rule-based & knowledge-based
 - Horn logic (rules)
 - Belief-desire-intention model
 - · Condition-action rules
- Statistical
 - Bayesian inference
 - Neural networks

- Process-oriented
 - State-transition machines
 - Business process modeling
- Numeric
 - Transfer functions (e.g. PID)
- Rule-based & knowledge-based
 - Horn logic (rules)
 - Belief-desire-intention model
 - · Condition-action rules
- Statistical
 - Bayesian inference
 - Neural networks

- Process-oriented
 - State-transition machines
 - Business process modeling
- Numeric
 - Transfer functions (e.g. PID)
- Rule-based & knowledge-based
 - Horn logic (rules)
 - Belief-desire-intention model
 - · Condition-action rules
- Statistical
 - Bayesian inference
 - Neural networks

Do not reproduce the failure of Web service descriptions (OWL-S, WSMO)

 $ightarrow\,$ Focus on **usability** and ECMAScript

Do not compete with Node-RED

ightarrow Complement it*

- Do not reproduce the failure of Web service descriptions (OWL-S, WSMO)
 - $ightarrow\,$ Focus on **usability** and ECMAScript
- Do not compete with Node-RED
 - ightarrow Complement it*

- Do not reproduce the failure of Web service descriptions (OWL-S, WSMO)
 - ightarrow Focus on **usability** and ECMAScript
- Do not compete with Node-RED
 - ightarrow Complement it*

- Do not reproduce the failure of Web service descriptions (OWL-S, WSMO)
 - ightarrow Focus on **usability** and ECMAScript
- Do not compete with Node-RED
 - $\rightarrow \,$ Complement it*

Roadmap & Conclusion

Conclusion

The current proposal is to include a task force on exchanging and packaging WoT Scripts in a potential working group for WoT.

Mission

- Integrate JSON-LD frames in the WoT scripting API
 - · For input requirements
 - For contextualization
- Focus on ECMAScript

Final Word

"Any application that can be written in JavaScript, will eventually be written in JavaScript"

— Jeff Atwood (paraphrasing Tim Berners-Lee)

Conclusion

The current proposal is to include a task force on exchanging and packaging WoT Scripts in a potential working group for WoT.

Mission

- Integrate JSON-LD frames in the WoT scripting API
 - For input requirements
 - For contextualization
- Focus on ECMAScript

Final Word

"Any application that can be written in JavaScript, will eventually be written in JavaScript"

— Jeff Atwood (paraphrasing Tim Berners-Lee)

Conclusion

The current proposal is to include a task force on exchanging and packaging WoT Scripts in a potential working group for WoT.

Mission

- Integrate JSON-LD frames in the WoT scripting API
 - For input requirements
 - For contextualization
- Focus on ECMAScript

Final Word

"Any application that can be written in JavaScript, will eventually be written in JavaScript"

- Jeff Atwood (paraphrasing Tim Berners-Lee)

Thanks for listening. Any questions?