NEXT STEPS FOR THE WEB OF THINGS: MOVING FROM INNOVATION TO MAINSTREAM

Eric Siow Michael McCool Part 1 – Crossing the Chasm
Part 2 – Standards Development Prioritization

PART 1 Crossing the chasm

Part 1

- State of the Union Internet of Things (IoT)
- What can the W3C and WoT Community Do?

Part 2

- Outline of plan to converge on data framework and standards
- Discussion and ideas for collaboration

STATE OF THE UNION (IOT)

- IoT is about 10 years old
- Hype has been much greater than present reality
- IoT is "biting off more than it can chew":
 - Trying to address too many markets
 - Involves too many and mostly uncoordinated SDOs and SIGs

Investments in IoT are at risk

CROSSING THE CHASM (IOT)

Focus on a vertical & address the needs of the Early Majority

- 1. Simplify technical complexity
- 2. Lower deployment risk and cost
- 3. Create customer peer references

ILLUSTRATION: A LOOK AT SMART CITIES

KEY CHALLENGES FACING SMART CITIES

- Lack of coalescence around a set of complementary standards
 - Hinders scalability, interoperability and evolution
 - Need to simplify: prioritize and define requirements
 - Increases cost of deployment
- Regional regulatory differences adding to confusion
 - Diverse requirements impede the scalability of the market
 - Need regulatory agencies to participate and help with standardization requirement
 - Lack of interoperability wastes up to 40% of IoT value (1)
 - Cities and technology partners may waste up to \$321 billion by 2025 (2)

WHAT CAN W3C AND THE WOT COMMUNITY DO?

- 1. Align, unite and cross the chasm together
 - Focus on an Application: Vertical Market Segment
 - Difficult to align given different business priorities & interests
 - May increase fragmentation rather than reduce it
 - Focus on a Platform: Data Interoperability
 - Easier to align: Most pressing shared problem
 - Enable different devices and platforms to interoperable
 - Plays to W3C's and WoT's Core competences

WHAT CAN W3C AND THE WOT COMMUNITY DO?

- 2. Lead an intentional and concerted drive towards convergence
 - Resist doing anything that adds to the existing fragmentation
 - Work with leading implementers and influencers to drive alignment among different jurisdictions
 - Liaise with other relevant standards & SIGs to drive alignment and convergence
 - Employ product profiles to define standards requirements
 - Define based on use cases in target verticals

WoT Charter: Focus on what would be most impactful to ecosystem

PART 2

STANDARDS DEVELOPMENT PRIORITIZATION

STANDARDS DEVELOPMENT PRIORITIZATION

Key to Success: Focus

- However, focusing on just one vertical will just lead to more fragmentation.
- The "platform strategy" is more appropriate: focus on a specific horizontal gap.

Identified gap: Lack of data interoperability.

• But we need to be even more precise than that!

WHAT IS "INTEROPERABILITY"?

- 1. Ingestion Interoperability: Connect Data Sources to Cloud
 - Normalize data using common semantics upon database ingestion.
- 2. Cloud Interoperability: Connect Vertical Silos Cloud-to-Cloud
 - Exchange data between cloud-based systems.
- 3. Mesh Interoperability: Connect Local Devices and Services
 - Exchange data and invoke interactions among local devices
- 4. Application Interoperability: Deploy Code across a Distributed System
 - Support portable runtime and application code.

INTEROPERABILITY TYPE VS. TECHNICAL REQUIREMENTS:

Priority	Requirement Type	Interaction Abstraction	Data Interpretation	Discovery Mechanism	Application Environment
1	Device-to-Cloud Data Ingestion	Description	Data Model		
2	Cloud-to-Cloud Data Transfer	Description	Data Model		
3	Device-to-Device Communication	Description	Data Model	Mechanism, Description	
4	IoT Application Orchestration	API	Data Model	API, Description	Management, API, Runtime

IOT DATA AND METADATA STANDARDS MAP: START STATE

CRUD(N)

Pub/Sub

RDF

Relational

Structured

OCF

Other

IOT DATA AND METADATA STANDARDS MAP: TARGET STATE

CRUD(N)

Pub/Sub

RDF

Relational

Discovery	Ingestion	Exchange	Modeling	Consumption
Descriptions Encoding		Protocols	Semantics	Query
W3C: RDF Schema/SHACL			W3C: RDF/JSON-LD	W3C: SPARQL
W3C: R	esource Descriptions			W3C: OWL
W3C: Data Schema				
W3C: HTML		IETF: HTTP	W3C/ISO: IoT Semantics	
OPC-UA: W3C D	OPC-UA: W3C Data Schema			
		OMG: DDS		SQL
	W3C: JSON-LD 1.1	Oasis: MQTT		
	IETF: CBOR	Oasis: AMQP		
	IETF: JSON			
	W3C: XML	IETF: ICN		IETF: COIN
	IETF: YAML			
	Structured Linked Data	IETF: IP/TCP/UDP	IETF: YANG	

Structured

OCF

Other

STANDARDS CONVERGENCE TIMELINE

KEY SHORT-TERM ACTIONS

- 1. Develop unified *Data Schema* for XML, JSON, CBOR, and YAML
 - Recommend and use JSON Schema as a basis for specifying structure.
 - Bring into W3C and officially extend to cover XML, JSON, CBOR, YAML
- 2. Recommend and extend JSON-LD semantics to JSON, XML, CBOR, YAML
 - Data is data; serialization should not matter. All data should be linked data (supporting relations) and should support semantic annotation.
- 3. Develop common *IoT Semantics* vocabulary ("ontology")
 - Set of interconvertible IoT-specific vocabulary definitions
 - Converge on a common technology framework (eg RDF), codify existing ontologies, incrementally move to common semantic foundation.

LONG-TERM ACTIONS: CLOUD, MESH, AND APPLICATION INTEROPERABILITY

- 1. Develop Management Framework
 - Application management framework perhaps based on web apps.
 - Define runtime security requirements for installable applications.
 - Ideally we unify the browser and IoT service models. Somehow.
- 2. Develop API supporting Description and Data Model Abstractions
 - A "dependent" specification
 - Ideally, design is independent of execution context (browser, device, etc).
 - 3. Define Discovery Mechanism(s)
 - Need baseline mechanism for bootstrapping.

CONCLUSIONS

- 1. Focus on key ecosystem challenges for WoT charter
- 2. Data interoperability is the key focus
- 3. We need to align and unite as a group
- 4. We need understand and address user's problems and priorities